Security
Headlines
HeadlinesLatestCVEs

Headline

CVE-2022-36004: Fix size check for large input shape and rates. · tensorflow/tensorflow@552bfce

TensorFlow is an open source platform for machine learning. When tf.random.gamma receives large input shape and rates, it gives a CHECK fail that can trigger a denial of service attack. We have patched the issue in GitHub commit 552bfced6ce4809db5f3ca305f60ff80dd40c5a3. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.

CVE
#mac#apple#dos#git

@@ -16,7 +16,10 @@

import numpy as np

from tensorflow.python.eager import context

from tensorflow.python.framework import constant_op

from tensorflow.python.framework import dtypes

from tensorflow.python.framework import errors

from tensorflow.python.framework import ops

from tensorflow.python.framework import random_seed

from tensorflow.python.framework import test_util

@@ -216,6 +219,16 @@ def testPositive(self):

self.assertEqual(0, math_ops.reduce_sum(math_ops.cast(

math_ops.less_equal(x, 0.), dtype=dtypes.int64)).eval())

def testSizeTooLarge(self):

# Grappler asserts on size overflow, so this error is only caught when

# running eagerly.

if context.executing_eagerly():

with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError),

“overflow”):

rate = constant_op.constant(1.0, shape=(4, 4, 4, 4, 4))

self.evaluate(

random_ops.random_gamma(

shape=[46902, 51188, 34063, 59195], alpha=rate))

if __name__ == "__main__":

test.main()

Related news

GHSA-mv8m-8x97-937q: TensorFlow vulnerable to `CHECK` fail in `tf.random.gamma`

### Impact When `tf.random.gamma` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. ```python import tensorflow as tf arg_0=tf.random.uniform(shape=(4,), dtype=tf.int32, maxval=65536) arg_1=tf.random.uniform(shape=(4, 4), dtype=tf.float64, maxval=None) arg_2=tf.random.uniform(shape=(4, 4, 4, 4, 4), dtype=tf.float64, maxval=None) arg_3=tf.float64 arg_4=48 arg_5='None' tf.random.gamma(shape=arg_0, alpha=arg_1, beta=arg_2, dtype=arg_3, seed=arg_4, name=arg_5) ``` ### Patches We have patched the issue in GitHub commit [552bfced6ce4809db5f3ca305f60ff80dd40c5a3](https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tens...

CVE: Latest News

CVE-2023-50976: Transactions API Authorization by oleiman · Pull Request #14969 · redpanda-data/redpanda
CVE-2023-6905
CVE-2023-6903
CVE-2023-6904
CVE-2023-3907