Headline
CVE-2021-41205: Build software better, together
TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for the QuantizeAndDequantizeV*
operations can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
Related news
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow's Grappler optimizer has a use of unitialized variable. If the `train_nodes` vector (obtained from the saved model that gets optimized) does not contain a `Dequeue` node, then `dequeue_node` is left unitialized. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SplitV` can trigger a segfault is an attacker supplies negative arguments. This occurs whenever `size_splits` contains more than one value and at least one value is negative. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the `ImmutableConst` operation in TensorFlow can be tricked into reading arbitrary memory contents. This is because the `tstring` TensorFlow string class has a special case for memory mapped strings but the operation itself does not offer any support for this datatype. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference function for `Transpose` is vulnerable to a heap buffer overflow. This occurs whenever `perm` contains negative elements. The shape inference function does not validate that the indices in `perm` are all valid. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for the `Cudnn*` operations in TensorFlow can be tricked into accessing invalid memory, via a heap buffer overflow. This occurs because the ranks of the `input`, `input_h` and `input_c` parameters are not validated, but code assumes they have certain values. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions several TensorFlow operations are missing validation for the shapes of the tensor arguments involved in the call. Depending on the API, this can result in undefined behavior and segfault or `CHECK`-fail related crashes but in some scenarios writes and reads from heap populated arrays are also possible. We have discovered these issues internally via tooling while working on improving/testing GPU op determinism. As such, we don't have reproducers and there will be multiple fixes for these issues. These fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the implementations for convolution operators trigger a division by 0 if passed empty filter tensor arguments. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `ParallelConcat` misses some input validation and can produce a division by 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `AllToAll` can be made to execute a division by 0. This occurs whenever the `split_count` argument is 0. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions an attacker can trigger undefined behavior, integer overflows, segfaults and `CHECK`-fail crashes if they can change saved checkpoints from outside of TensorFlow. This is because the checkpoints loading infrastructure is missing validation for invalid file formats. The fixes will be included in TensorFlow 2.7.0. We will also cherrypick these commits on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `SparseBinCount` is vulnerable to a heap OOB access. This is because of missing validation between the elements of the `values` argument and the shape of the sparse output. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions during TensorFlow's Grappler optimizer phase, constant folding might attempt to deep copy a resource tensor. This results in a segfault, as these tensors are supposed to not change. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the implementation of `FusedBatchNorm` kernels is vulnerable to a heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `tf.ragged.cross` has an undefined behavior due to binding a reference to `nullptr`. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference code for `DeserializeSparse` can trigger a null pointer dereference. This is because the shape inference function assumes that the `serialize_sparse` tensor is a tensor with positive rank (and having `3` as the last dimension). The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions the shape inference functions for `SparseCountSparseOutput` can trigger a read outside of bounds of heap allocated array. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions if `tf.summary.create_file_writer` is called with non-scalar arguments code crashes due to a `CHECK`-fail. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
TensorFlow is an open source platform for machine learning. In affected versions TensorFlow allows tensor to have a large number of dimensions and each dimension can be as large as desired. However, the total number of elements in a tensor must fit within an `int64_t`. If an overflow occurs, `MultiplyWithoutOverflow` would return a negative result. In the majority of TensorFlow codebase this then results in a `CHECK`-failure. Newer constructs exist which return a `Status` instead of crashing the binary. This is similar to CVE-2021-29584. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.