Headline
CVE-2022-35941: Fix security vulnerability with AvgPoolGrad · tensorflow/tensorflow@3a6ac52
TensorFlow is an open source platform for machine learning. The AvgPoolOp
function takes an argument ksize
that must be positive but is not checked. A negative ksize
can trigger a CHECK
failure and crash the program. We have patched the issue in GitHub commit 3a6ac52664c6c095aa2b114e742b0aa17fdce78f. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds to this issue.
@@ -298,7 +298,7 @@ class AvgPoolingGradOp : public OpKernel { TensorShape output_shape; auto shape_vec = tensor_in_shape.vec<int32>(); for (int64_t i = 0; i < tensor_in_shape.NumElements(); ++i) { output_shape.AddDim(shape_vec(i)); OP_REQUIRES_OK(context, output_shape.AddDimWithStatus(shape_vec(i))); } const int64_t in_rows = output_shape.dim_size(1); const int64_t in_cols = output_shape.dim_size(2); @@ -457,7 +457,7 @@ class AvgPoolingGradOp<GPUDevice, T> : public OpKernel { TensorShape output_shape; auto shape_vec = tensor_in_shape.vec<int32>(); for (int64_t i = 0; i < tensor_in_shape.NumElements(); ++i) { output_shape.AddDim(shape_vec(i)); OP_REQUIRES_OK(context, output_shape.AddDimWithStatus(shape_vec(i))); }
if (output_shape.num_elements() == 0) { @@ -543,7 +543,7 @@ class AvgPoolingGradOpCustomGPUKernel : public OpKernel { TensorShape output_shape; auto shape_vec = tensor_in_shape.vec<int32>(); for (int64_t i = 0; i < tensor_in_shape.NumElements(); ++i) { output_shape.AddDim(shape_vec(i)); OP_REQUIRES_OK(context, output_shape.AddDimWithStatus(shape_vec(i))); } if (output_shape.num_elements() == 0) { Tensor* output = nullptr;
Related news
### Impact The [`AvgPoolOp`](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/avgpooling_op.cc#L56-L98) function takes an argument `ksize` that must be positive but is not checked. A negative `ksize` can trigger a `CHECK` failure and crash the program. ```python import tensorflow as tf import numpy as np value = np.ones([1, 1, 1, 1]) ksize = [1, 1e20, 1, 1] strides = [1, 1, 1, 1] padding = 'SAME' data_format = 'NHWC' tf.raw_ops.AvgPool(value=value, ksize=ksize, strides=strides, padding=padding, data_format=data_format) ``` ### Patches We have patched the issue in GitHub commit [3a6ac52664c6c095aa2b114e742b0aa17fdce78f](https://github.com/tensorflow/tensorflow/commit/3a6ac52664c6c095aa2b114e742b0aa17fdce78f). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. ### For more ...