Security
Headlines
HeadlinesLatestCVEs

Headline

CVE-2022-35984: Fix tensor shape dtype bug in parameterized_truncated_normal. · tensorflow/tensorflow@72180be

TensorFlow is an open source platform for machine learning. ParameterizedTruncatedNormal assumes shape is of type int32. A valid shape of type int64 results in a mismatched type CHECK fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 72180be03447a10810edca700cbc9af690dfeb51. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.

CVE
#mac#dos#git

@@ -32,6 +32,7 @@ limitations under the License.

#include “tensorflow/core/framework/register_types.h”

#include “tensorflow/core/framework/tensor.h”

#include “tensorflow/core/framework/tensor_shape.h”

#include “tensorflow/core/framework/tensor_util.h”

#include “tensorflow/core/kernels/stateless_random_ops.h”

#include “tensorflow/core/lib/random/random_distributions.h”

#include “tensorflow/core/platform/logging.h”

@@ -630,20 +631,18 @@ class ParameterizedTruncatedNormalOp : public OpKernel {

OP_REQUIRES(ctx, shape_tensor.NumElements() > 0,

errors::InvalidArgument("Shape tensor must not be empty, got ",

shape_tensor.DebugString()));

int32_t num_batches = shape_tensor.flat<int32>()(0);

TensorShape tensor_shape;

OP_REQUIRES_OK(ctx, tensor::MakeShape(shape_tensor, &tensor_shape));

int32_t num_batches = tensor_shape.dim_size(0);

int32_t samples_per_batch = 1;

const int32_t num_dims = shape_tensor.dim_size(0);

const int32_t num_dims = tensor_shape.dims();

for (int32_t i = 1; i < num_dims; i++) {

samples_per_batch *= shape_tensor.flat<int32>()(i);

samples_per_batch *= tensor_shape.dim_size(i);

}

const int32_t num_elements = num_batches * samples_per_batch;

// Allocate the output before fudging num_batches and samples_per_batch.

auto shape_vec = shape_tensor.flat<int32>();

TensorShape tensor_shape;

OP_REQUIRES_OK(ctx, TensorShapeUtils::MakeShape(

shape_vec.data(), shape_vec.size(), &tensor_shape));

Tensor* samples_tensor;

OP_REQUIRES_OK(ctx, ctx->allocate_output(0, tensor_shape, &samples_tensor));

Related news

GHSA-p2xf-8hgm-hpw5: TensorFlow vulnerable to `CHECK` fail in `ParameterizedTruncatedNormal`

### Impact `ParameterizedTruncatedNormal` assumes `shape` is of type `int32`. A valid `shape` of type `int64` results in a mismatched type `CHECK` fail that can be used to trigger a denial of service attack. ```python import tensorflow as tf seed = 1618 seed2 = 0 shape = tf.random.uniform(shape=[3], minval=-10000, maxval=10000, dtype=tf.int64, seed=4894) means = tf.random.uniform(shape=[3, 3, 3], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2971) stdevs = tf.random.uniform(shape=[3, 3, 3], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2971) minvals = tf.random.uniform(shape=[3, 3, 3], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2971) maxvals = tf.random.uniform(shape=[3, 3, 3], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2971) tf.raw_ops.ParameterizedTruncatedNormal(shape=shape, means=means, stdevs=stdevs, minvals=minvals, maxvals=maxvals, seed=seed, seed2=seed2) ``` ### Patches We have patched the issue in GitHub commit [72180be03447a10810edca700cbc9a...

CVE: Latest News

CVE-2023-50976: Transactions API Authorization by oleiman · Pull Request #14969 · redpanda-data/redpanda
CVE-2023-6905
CVE-2023-6903
CVE-2023-6904
CVE-2023-3907