Source
Microsoft Security Response Center
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**How could an attacker exploit this vulnerability?** An attacker could exploit the vulnerability by tricking an authenticated user (UI:R) into attempting to connect to a malicious SQL server database via a connection driver (for example: OLE DB or OLEDB as applicable). This could result in the database returning malicious data that could cause arbitrary code execution on the client.
**According to the CVSS metric, the attack complexity is high (AC:H). What does that mean for this vulnerability?** Successful exploitation of this vulnerability requires an attacker to win a race condition.
**Are there any further actions I need to take to be protected from this vulnerability?** Yes. The Windows Smart Card infrastructure relies on the Cryptographic Service Provider (CSP) and Key Storage Provider (KSP) to isolate cryptographic operations from the Smart Card implementation. The KSP is part of the Crypto Next Generation (CNG) architecture and is intended to support modern smart cards. In the case of RSA based certificates, the Smart Card Certificate Propagation service automatically overrides the default and uses the CSP instead of the KSP. This limits usage to the cryptography provided by the CSP and does not benefit from the modern cryptography provided by the KSP. Beginning with the July 2024 security updates released on July 9, 2024, this vulnerability will be addressed by removing the RSA override and using the KSP as the default. This change is initially disabled by default to allow customers to test it in their environment and to detect any application compatibility...