Security
Headlines
HeadlinesLatestCVEs

Headline

GHSA-8wwm-6264-x792: Core dump when loading TFLite models with quantization

Impact

Certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling.

Thus, since code was calling QuantizeMultiplierSmallerThanOneExp, the TFLITE_CHECK_LT assertion would trigger and abort the process.

Patches

We have patched the issue in GitHub commit a989426ee1346693cc015792f11d715f6944f2b8.

The fix will be included in TensorFlow 2.9.0. We will also cherrypick this commit on TensorFlow 2.8.1, TensorFlow 2.7.2, and TensorFlow 2.6.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported externally via a GitHub issue.

ghsa
#vulnerability#git

Impact

Certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling.

Thus, since code was calling QuantizeMultiplierSmallerThanOneExp, the TFLITE_CHECK_LT assertion would trigger and abort the process.

Patches

We have patched the issue in GitHub commit a989426ee1346693cc015792f11d715f6944f2b8.

The fix will be included in TensorFlow 2.9.0. We will also cherrypick this commit on TensorFlow 2.8.1, TensorFlow 2.7.2, and TensorFlow 2.6.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported externally via a GitHub issue.

References

  • GHSA-8wwm-6264-x792
  • https://nvd.nist.gov/vuln/detail/CVE-2022-29212
  • tensorflow/tensorflow#43661
  • tensorflow/tensorflow@a989426
  • https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/lite/kernels/internal/quantization_util.cc#L114-L123
  • https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4
  • https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2
  • https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1
  • https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0

Related news

CVE-2022-29212: Core dumped when invoking TFLite model converted using latest nightly TFLite converter (2.4.0dev2020929) · Issue #43661 · tensorflow/tensorflow

TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, certain TFLite models that were created using TFLite model converter would crash when loaded in the TFLite interpreter. The culprit is that during quantization the scale of values could be greater than 1 but code was always assuming sub-unit scaling. Thus, since code was calling `QuantizeMultiplierSmallerThanOneExp`, the `TFLITE_CHECK_LT` assertion would trigger and abort the process. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.

CVE-2022-29207: Release TensorFlow 2.6.4 · tensorflow/tensorflow

TensorFlow is an open source platform for machine learning. Prior to versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4, multiple TensorFlow operations misbehave in eager mode when the resource handle provided to them is invalid. In graph mode, it would have been impossible to perform these API calls, but migration to TF 2.x eager mode opened up this vulnerability. If the resource handle is empty, then a reference is bound to a null pointer inside TensorFlow codebase (various codepaths). This is undefined behavior. Versions 2.9.0, 2.8.1, 2.7.2, and 2.6.4 contain a patch for this issue.

ghsa: Latest News

GHSA-49cc-xrjf-9qf7: SFTPGo allows administrators to restrict command execution from the EventManager