Security
Headlines
HeadlinesLatestCVEs

Source

ghsa

GHSA-634p-93h9-92vh: ghas-to-csv vulnerable to Improper Neutralization of Formula Elements in a CSV File

### Impact This GitHub Action creates a CSV file without sanitizing the output of the APIs. If an alert is dismissed or any other custom field contains executable code / formulas, it might be run when an endpoint opens that CSV file in a spreadsheet program. The data flow looks like this 👇🏻 ```mermaid graph TD A(Repository) -->|developer dismissal, other data input| B(GitHub Advanced Security data) B -->|ghas-to-csv| C(CSV file) C -->|spreadsheet program| D(endpoint executes potentially malicious code) ``` ### Patches Please use version `v1` or later. That tag moves from using `csv` to `defusedcsv` to mitigate this problem. ### Workarounds There is no workaround. Please upgrade to using the latest tag, `v1` (or later). ### References * CWE-1236 information from [MITRE](https://cwe.mitre.org/data/definitions/1236.html) * CSV injection information from [OWASP](https://owasp.org/www-community/attacks/CSV_Injection) * CodeQL query for CWE-1236 in Python [here](ht...

ghsa
#git
GHSA-mh3m-62v7-68xg: TensorFlow vulnerable to `CHECK` fail in `Unbatch`

### Impact When `Unbatch` receives a nonscalar input `id`, it gives a `CHECK` fail that can trigger a denial of service attack. ```python import tensorflow as tf import numpy as np arg_0=tf.constant(value=np.random.random(size=(3, 3, 1)), dtype=tf.float64) arg_1=tf.constant(value=np.random.randint(0,100,size=(3, 3, 1)), dtype=tf.int64) arg_2=tf.constant(value=np.random.randint(0,100,size=(3, 3, 1)), dtype=tf.int64) arg_3=47 arg_4='' arg_5='' tf.raw_ops.Unbatch(batched_tensor=arg_0, batch_index=arg_1, id=arg_2, timeout_micros=arg_3, container=arg_4, shared_name=arg_5) ``` ### Patches We have patched the issue in GitHub commit [4419d10d576adefa36b0e0a9425d2569f7c0189f](https://github.com/tensorflow/tensorflow/commit/4419d10d576adefa36b0e0a9425d2569f7c0189f). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. ### For...

GHSA-828c-5j5q-vrjq: TensorFlow vulnerable to null-dereference in `mlir::tfg::GraphDefImporter::ConvertNodeDef`

### Impact When [`mlir::tfg::GraphDefImporter::ConvertNodeDef`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/graphdef_import.cc) tries to convert NodeDefs without an op name, it crashes. ```cpp Status GraphDefImporter::ConvertNodeDef(OpBuilder &builder, ConversionState &s, const NodeDef &node) { VLOG(4) << "Importing: " << node.name(); OperationState state(ConvertLocation(node), absl::StrCat("tfg.", node.op())); // The GraphImporter does light shape inference, but here we will defer all of // that to the shape inference pass. const OpDef *op_def; const OpRegistrationData *op_reg_data = nullptr; if ((op_reg_data = registry_.LookUp(node.op()))) { op_def = &op_reg_data->op_def; } else { auto it = function_op_defs_.find(node.op()); if (it == function_op_defs_.end()) return InvalidArgument("Unable to find OpDef for ", node.op()); op_def = it->second; } ``` `node.op().empt...

GHSA-fv43-93gv-vm8f: TensorFlow vulnerable to null dereference on MLIR on empty function attributes

### Impact When [`mlir::tfg::ConvertGenericFunctionToFunctionDef`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/ir/importexport/functiondef_import.cc) is given empty function attributes, it gives a null dereference. ```cpp // Import the function attributes with a `tf.` prefix to match the current // infrastructure expectations. for (const auto& namedAttr : func.attr()) { const std::string& name = "tf." + namedAttr.first; const AttrValue& tf_attr = namedAttr.second; TF_ASSIGN_OR_RETURN(Attribute attr, ConvertAttributeValue(tf_attr, builder, tfgDialect)); attrs.append(name, attr); } ``` If `namedAttr.first` is empty, it will crash. ### Patches We have patched the issue in GitHub commit [1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b](https://github.com/tensorflow/tensorflow/commit/1cf45b831eeb0cab8655c9c7c5d06ec6f45fc41b). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2....

GHSA-wqmc-pm8c-2jhc: TensorFlow vulnerable to segfault in `Requantize`

### Impact If `Requantize` is given `input_min`, `input_max`, `requested_output_min`, `requested_output_max` tensors of a nonzero rank, it results in a segfault that can be used to trigger a denial of service attack. ```python import tensorflow as tf out_type = tf.quint8 input = tf.constant([1], shape=[3], dtype=tf.qint32) input_min = tf.constant([], shape=[0], dtype=tf.float32) input_max = tf.constant(-256, shape=[1], dtype=tf.float32) requested_output_min = tf.constant(-256, shape=[1], dtype=tf.float32) requested_output_max = tf.constant(-256, shape=[1], dtype=tf.float32) tf.raw_ops.Requantize(input=input, input_min=input_min, input_max=input_max, requested_output_min=requested_output_min, requested_output_max=requested_output_max, out_type=out_type) ``` ### Patches We have patched the issue in GitHub commit [785d67a78a1d533759fcd2f5e8d6ef778de849e0](https://github.com/tensorflow/tensorflow/commit/785d67a78a1d533759fcd2f5e8d6ef778de849e0). The fix will be included in TensorFlow 2....

GHSA-cv2p-32v3-vhwq: TensorFlow vulnerable to `CHECK` fail in `RandomPoissonV2`

### Impact When `RandomPoissonV2` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. ```python import tensorflow as tf arg_0=tf.random.uniform(shape=(4,), dtype=tf.int32, maxval=65536) arg_1=tf.random.uniform(shape=(4, 4, 4, 4, 4), dtype=tf.float32, maxval=None) arg_2=0 arg_3=0 arg_4=tf.int32 arg_5=None tf.raw_ops.RandomPoissonV2(shape=arg_0, rate=arg_1, seed=arg_2, seed2=arg_3, dtype=arg_4, name=arg_5) ``` ### Patches We have patched the issue in GitHub commit [552bfced6ce4809db5f3ca305f60ff80dd40c5a3](https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blob/maste...

GHSA-r26c-679w-mrjm: TensorFlow vulnerable to `CHECK` fail in `FakeQuantWithMinMaxVarsGradient`

### Impact When `tf.quantization.fake_quant_with_min_max_vars_gradient` receives input `min` or `max` that is nonscalar, it gives a `CHECK` fail that can trigger a denial of service attack. ```python import tensorflow as tf import numpy as np arg_0=tf.constant(value=np.random.random(size=(2, 2)), shape=(2, 2), dtype=tf.float32) arg_1=tf.constant(value=np.random.random(size=(2, 2)), shape=(2, 2), dtype=tf.float32) arg_2=tf.constant(value=np.random.random(size=(2, 2)), shape=(2, 2), dtype=tf.float32) arg_3=tf.constant(value=np.random.random(size=(2, 2)), shape=(2, 2), dtype=tf.float32) arg_4=8 arg_5=False arg_6='' tf.quantization.fake_quant_with_min_max_vars_gradient(gradients=arg_0, inputs=arg_1, min=arg_2, max=arg_3, num_bits=arg_4, narrow_range=arg_5, name=arg_6) ``` ### Patches We have patched the issue in GitHub commit [f3cf67ac5705f4f04721d15e485e192bb319feed](https://github.com/tensorflow/tensorflow/commit/f3cf67ac5705f4f04721d15e485e192bb319feed). The fix will be included in T...

GHSA-g9h5-vr8m-x2h4: TensorFlow vulnerable to `CHECK` fail in `AudioSummaryV2`

### Impact When `AudioSummaryV2` receives an input `sample_rate` with more than one element, it gives a `CHECK` fails that can be used to trigger a denial of service attack. ```python import tensorflow as tf arg_0='' arg_1=tf.random.uniform(shape=(1,1), dtype=tf.float32, maxval=None) arg_2=tf.random.uniform(shape=(2,1), dtype=tf.float32, maxval=None) arg_3=3 arg_4='' tf.raw_ops.AudioSummaryV2(tag=arg_0, tensor=arg_1, sample_rate=arg_2, max_outputs=arg_3, name=arg_4) ``` ### Patches We have patched the issue in GitHub commit [bf6b45244992e2ee543c258e519489659c99fb7f](https://github.com/tensorflow/tensorflow/commit/bf6b45244992e2ee543c258e519489659c99fb7f). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tensorflow/tensorflow/blo...

GHSA-4p6f-m4f9-ch88: Binary vulnerable to Slice Memory Allocation with Excessive Size Value

### Impact > _What kind of vulnerability is it? Who is impacted?_ The vulnerability is a memory allocation vulnerability that can be exploited to allocate slices in memory with (arbitrary) excessive size value, which can either exhaust available memory or crash the whole program. When using `github.com/gagliardetto/binary` to parse unchecked (or wrong type of) data from untrusted sources of input (e.g. the blockchain) into slices, it's possible to allocate memory with excessive size. When `dec.Decode(&val)` method is used to parse data into a structure that is or contains slices of values, the length of the slice was previously read directly from the data itself without any checks on the size of it, and then a slice was allocated. This could lead to an overflow and an allocation of memory with excessive size value. Example: ```go package main import ( "github.com/gagliardetto/binary" // any version before v0.7.1 is vulnerable "log" ) type MyStruct struct { Field1 []byte // fi...

GHSA-mv8m-8x97-937q: TensorFlow vulnerable to `CHECK` fail in `tf.random.gamma`

### Impact When `tf.random.gamma` receives large input shape and rates, it gives a `CHECK` fail that can trigger a denial of service attack. ```python import tensorflow as tf arg_0=tf.random.uniform(shape=(4,), dtype=tf.int32, maxval=65536) arg_1=tf.random.uniform(shape=(4, 4), dtype=tf.float64, maxval=None) arg_2=tf.random.uniform(shape=(4, 4, 4, 4, 4), dtype=tf.float64, maxval=None) arg_3=tf.float64 arg_4=48 arg_5='None' tf.random.gamma(shape=arg_0, alpha=arg_1, beta=arg_2, dtype=arg_3, seed=arg_4, name=arg_5) ``` ### Patches We have patched the issue in GitHub commit [552bfced6ce4809db5f3ca305f60ff80dd40c5a3](https://github.com/tensorflow/tensorflow/commit/552bfced6ce4809db5f3ca305f60ff80dd40c5a3). The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. ### For more information Please consult [our security guide](https://github.com/tens...