Security
Headlines
HeadlinesLatestCVEs

Tag

#buffer_overflow

CVE-2022-44257

TOTOLINK LR350 V9.3.5u.6369_B20220309 contains a post-authentication buffer overflow via parameter pppoeUser in the setOpModeCfg function.

CVE
#buffer_overflow#auth
CVE-2022-44256

TOTOLINK LR350 V9.3.5u.6369_B20220309 contains a post-authentication buffer overflow via parameter lang in the setLanguageCfg function.

CVE-2022-44253

TOTOLINK LR350 V9.3.5u.6369_B20220309 contains a post-authentication buffer overflow via parameter ip in the setDiagnosisCfg function.

CVE-2022-44254

TOTOLINK LR350 V9.3.5u.6369_B20220309 contains a post-authentication buffer overflow via parameter text in the setSmsCfg function.

Debian Security Advisory 5287-1

Debian Linux Security Advisory 5287-1 - Several vulnerabilities were discovered in Heimdal, an implementation of Kerberos 5 that aims to be compatible with MIT Kerberos.

CVE-2022-39067: Security Bulletin Details

There is a buffer overflow vulnerability in ZTE MF286R. Due to lack of input validation on parameters of the wifi interface, an authenticated attacker could use the vulnerability to perform a denial of service attack.

CVE-2022-44200: IoT_vuln/Netgear/R7000P/17 at main · RobinWang825/IoT_vuln

Netgear R7000P V1.3.0.8, V1.3.1.64 is vulnerable to Buffer Overflow via parameters: stamode_dns1_pri and stamode_dns1_sec.

CVE-2022-44190: IoT_vuln/Netgear/R7000P/6 at main · RobinWang825/IoT_vuln

Netgear R7000P V1.3.1.64 is vulnerable to Buffer Overflow via parameter enable_band_steering.

CVE-2022-44191: IoT_vuln/Netgear/R7000P/8 at main · RobinWang825/IoT_vuln

Netgear R7000P V1.3.1.64 is vulnerable to Buffer Overflow via parameters KEY1 and KEY2.

GHSA-h6q3-vv32-2cq5: Buffer overflow in `CONV_3D_TRANSPOSE` on TFLite

### Impact The reference kernel of the [`CONV_3D_TRANSPOSE`](https://github.com/tensorflow/tensorflow/blob/091e63f0ea33def7ecad661a5ac01dcafbafa90b/tensorflow/lite/kernels/internal/reference/conv3d_transpose.h#L121) TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of `data_ptr += num_channels;` it should be `data_ptr += output_num_channels;` as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels. An attacker can craft a model with a specific number of input channels in a way similar to the attached example script. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter (i.e. `experimental_op_resolver_type=tf.lite.experimental.OpResolverType.BUILTIN_REF` is used). ```p...