Headline
CVE-2023-42811: lib.rs - source
aes-gcm is a pure Rust implementation of the AES-GCM. Starting in version 0.10.0 and prior to version 0.10.3, in the AES GCM implementation of decrypt_in_place_detached, the decrypted ciphertext (i.e. the correct plaintext) is exposed even if tag verification fails. If a program using the aes-gcm
crate’s decrypt_in_place*
APIs accesses the buffer after decryption failure, it will contain a decryption of an unauthenticated input. Depending on the specific nature of the program this may enable Chosen Ciphertext Attacks (CCAs) which can cause a catastrophic breakage of the cipher including full plaintext recovery. Version 0.10.3 contains a fix for this issue.
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc = include_str!("../README.md")]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
)]
#![deny(unsafe_code)]
#![warn(missing_docs, rust_2018_idioms)]
//! # Usage
//!
//! Simple usage (allocating, no associated data):
//!
//! ```
//! use aes_gcm::{
//! aead::{Aead, AeadCore, KeyInit, OsRng},
//! Aes256Gcm, Nonce, Key // Or `Aes128Gcm`
//! };
//!
//! # fn gen_key() -> Result<(), core::array::TryFromSliceError> {
//! // The encryption key can be generated randomly:
//! # #[cfg(all(feature = "getrandom", feature = "std"))] {
//! let key = Aes256Gcm::generate_key(OsRng);
//! # }
//!
//! // Transformed from a byte array:
//! let key: &[u8; 32] = &[42; 32];
//! let key: &Key<Aes256Gcm> = key.into();
//!
//! // Note that you can get byte array from slice using the `TryInto` trait:
//! let key: &[u8] = &[42; 32];
//! let key: [u8; 32] = key.try_into()?;
//! # Ok(()) }
//!
//! # fn main() -> Result<(), aes_gcm::Error> {
//! // Alternatively, the key can be transformed directly from a byte slice
//! // (panicks on length mismatch):
//! # let key: &[u8] = &[42; 32];
//! let key = Key::<Aes256Gcm>::from_slice(key);
//!
//! let cipher = Aes256Gcm::new(&key);
//! let nonce = Aes256Gcm::generate_nonce(&mut OsRng); // 96-bits; unique per message
//! let ciphertext = cipher.encrypt(&nonce, b"plaintext message".as_ref())?;
//! let plaintext = cipher.decrypt(&nonce, ciphertext.as_ref())?;
//! assert_eq!(&plaintext, b"plaintext message");
//! # Ok(())
//! # }
//! ```
//!
//! ## In-place Usage (eliminates `alloc` requirement)
//!
//! This crate has an optional `alloc` feature which can be disabled in e.g.
//! microcontroller environments that don't have a heap.
//!
//! The [`AeadInPlace::encrypt_in_place`] and [`AeadInPlace::decrypt_in_place`]
//! methods accept any type that impls the [`aead::Buffer`] trait which
//! contains the plaintext for encryption or ciphertext for decryption.
//!
//! Note that if you enable the `heapless` feature of this crate,
//! you will receive an impl of [`aead::Buffer`] for `heapless::Vec`
//! (re-exported from the [`aead`] crate as [`aead::heapless::Vec`]),
//! which can then be passed as the `buffer` parameter to the in-place encrypt
//! and decrypt methods:
//!
#![cfg_attr(
all(feature = "getrandom", feature = "heapless", feature = "std"),
doc = "```"
)]
#![cfg_attr(
not(all(feature = "getrandom", feature = "heapless", feature = "std")),
doc = "```ignore"
)]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use aes_gcm::{
//! aead::{AeadCore, AeadInPlace, KeyInit, OsRng, heapless::Vec},
//! Aes256Gcm, Nonce, // Or `Aes128Gcm`
//! };
//!
//! let key = Aes256Gcm::generate_key(&mut OsRng);
//! let cipher = Aes256Gcm::new(&key);
//! let nonce = Aes256Gcm::generate_nonce(&mut OsRng); // 96-bits; unique per message
//!
//! let mut buffer: Vec<u8, 128> = Vec::new(); // Note: buffer needs 16-bytes overhead for auth tag
//! buffer.extend_from_slice(b"plaintext message");
//!
//! // Encrypt `buffer` in-place, replacing the plaintext contents with ciphertext
//! cipher.encrypt_in_place(&nonce, b"", &mut buffer)?;
//!
//! // `buffer` now contains the message ciphertext
//! assert_ne!(&buffer, b"plaintext message");
//!
//! // Decrypt `buffer` in-place, replacing its ciphertext context with the original plaintext
//! cipher.decrypt_in_place(&nonce, b"", &mut buffer)?;
//! assert_eq!(&buffer, b"plaintext message");
//! # Ok(())
//! # }
//! ```
//!
//! Similarly, enabling the `arrayvec` feature of this crate will provide an impl of
//! [`aead::Buffer`] for `arrayvec::ArrayVec` (re-exported from the [`aead`] crate as
//! [`aead::arrayvec::ArrayVec`]).
pub use aead::{self, AeadCore, AeadInPlace, Error, Key, KeyInit, KeySizeUser};
#[cfg(feature = "aes")]
pub use aes;
use cipher::{
consts::{U0, U16},
generic_array::{ArrayLength, GenericArray},
BlockCipher, BlockEncrypt, BlockSizeUser, InnerIvInit, StreamCipherCore,
};
use core::marker::PhantomData;
use ghash::{universal_hash::UniversalHash, GHash};
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;
#[cfg(feature = "aes")]
use aes::{cipher::consts::U12, Aes128, Aes256};
/// Maximum length of associated data.
pub const A_MAX: u64 = 1 << 36;
/// Maximum length of plaintext.
pub const P_MAX: u64 = 1 << 36;
/// Maximum length of ciphertext.
pub const C_MAX: u64 = (1 << 36) + 16;
/// AES-GCM nonces.
pub type Nonce<NonceSize> = GenericArray<u8, NonceSize>;
/// AES-GCM tags.
pub type Tag<TagSize = U16> = GenericArray<u8, TagSize>;
/// Trait implemented for valid tag sizes, i.e.
/// [`U12`][consts::U12], [`U13`][consts::U13], [`U14`][consts::U14],
/// [`U15`][consts::U15] and [`U16`][consts::U16].
pub trait TagSize: private::SealedTagSize {}
impl<T: private::SealedTagSize> TagSize for T {}
mod private {
use aead::generic_array::ArrayLength;
use cipher::{consts, Unsigned};
// Sealed traits stop other crates from implementing any traits that use it.
pub trait SealedTagSize: ArrayLength<u8> + Unsigned {}
impl SealedTagSize for consts::U12 {}
impl SealedTagSize for consts::U13 {}
impl SealedTagSize for consts::U14 {}
impl SealedTagSize for consts::U15 {}
impl SealedTagSize for consts::U16 {}
}
/// AES-GCM with a 128-bit key and 96-bit nonce.
#[cfg(feature = "aes")]
#[cfg_attr(docsrs, doc(cfg(feature = "aes")))]
pub type Aes128Gcm = AesGcm<Aes128, U12>;
/// AES-GCM with a 256-bit key and 96-bit nonce.
#[cfg(feature = "aes")]
#[cfg_attr(docsrs, doc(cfg(feature = "aes")))]
pub type Aes256Gcm = AesGcm<Aes256, U12>;
/// AES block.
type Block = GenericArray<u8, U16>;
/// Counter mode with a 32-bit big endian counter.
type Ctr32BE<Aes> = ctr::CtrCore<Aes, ctr::flavors::Ctr32BE>;
/// AES-GCM: generic over an underlying AES implementation and nonce size.
///
/// This type is generic to support substituting alternative AES implementations
/// (e.g. embedded hardware implementations)
///
/// It is NOT intended to be instantiated with any block cipher besides AES!
/// Doing so runs the risk of unintended cryptographic properties!
///
/// The `NonceSize` generic parameter can be used to instantiate AES-GCM with other
/// nonce sizes, however it's recommended to use it with `typenum::U12`,
/// the default of 96-bits.
///
/// The `TagSize` generic parameter can be used to instantiate AES-GCM with other
/// authorization tag sizes, however it's recommended to use it with `typenum::U16`,
/// the default of 128-bits.
///
/// If in doubt, use the built-in [`Aes128Gcm`] and [`Aes256Gcm`] type aliases.
#[derive(Clone)]
pub struct AesGcm<Aes, NonceSize, TagSize = U16>
where
TagSize: self::TagSize,
{
/// Encryption cipher.
cipher: Aes,
/// GHASH authenticator.
ghash: GHash,
/// Length of the nonce.
nonce_size: PhantomData<NonceSize>,
/// Length of the tag.
tag_size: PhantomData<TagSize>,
}
impl<Aes, NonceSize, TagSize> KeySizeUser for AesGcm<Aes, NonceSize, TagSize>
where
Aes: KeySizeUser,
TagSize: self::TagSize,
{
type KeySize = Aes::KeySize;
}
impl<Aes, NonceSize, TagSize> KeyInit for AesGcm<Aes, NonceSize, TagSize>
where
Aes: BlockSizeUser<BlockSize = U16> + BlockEncrypt + KeyInit,
TagSize: self::TagSize,
{
fn new(key: &Key<Self>) -> Self {
Aes::new(key).into()
}
}
impl<Aes, NonceSize, TagSize> From<Aes> for AesGcm<Aes, NonceSize, TagSize>
where
Aes: BlockSizeUser<BlockSize = U16> + BlockEncrypt,
TagSize: self::TagSize,
{
fn from(cipher: Aes) -> Self {
let mut ghash_key = ghash::Key::default();
cipher.encrypt_block(&mut ghash_key);
let ghash = GHash::new(&ghash_key);
#[cfg(feature = "zeroize")]
ghash_key.zeroize();
Self {
cipher,
ghash,
nonce_size: PhantomData,
tag_size: PhantomData,
}
}
}
impl<Aes, NonceSize, TagSize> AeadCore for AesGcm<Aes, NonceSize, TagSize>
where
NonceSize: ArrayLength<u8>,
TagSize: self::TagSize,
{
type NonceSize = NonceSize;
type TagSize = TagSize;
type CiphertextOverhead = U0;
}
impl<Aes, NonceSize, TagSize> AeadInPlace for AesGcm<Aes, NonceSize, TagSize>
where
Aes: BlockCipher + BlockSizeUser<BlockSize = U16> + BlockEncrypt,
NonceSize: ArrayLength<u8>,
TagSize: self::TagSize,
{
fn encrypt_in_place_detached(
&self,
nonce: &Nonce<NonceSize>,
associated_data: &[u8],
buffer: &mut [u8],
) -> Result<Tag<TagSize>, Error> {
if buffer.len() as u64 > P_MAX || associated_data.len() as u64 > A_MAX {
return Err(Error);
}
let (ctr, mask) = self.init_ctr(nonce);
// TODO(tarcieri): interleave encryption with GHASH
// See: <https://github.com/RustCrypto/AEADs/issues/74>
ctr.apply_keystream_partial(buffer.into());
let full_tag = self.compute_tag(mask, associated_data, buffer);
Ok(Tag::clone_from_slice(&full_tag[..TagSize::to_usize()]))
}
fn decrypt_in_place_detached(
&self,
nonce: &Nonce<NonceSize>,
associated_data: &[u8],
buffer: &mut [u8],
tag: &Tag<TagSize>,
) -> Result<(), Error> {
if buffer.len() as u64 > C_MAX || associated_data.len() as u64 > A_MAX {
return Err(Error);
}
let (ctr, mask) = self.init_ctr(nonce);
// TODO(tarcieri): interleave encryption with GHASH
// See: <https://github.com/RustCrypto/AEADs/issues/74>
let expected_tag = self.compute_tag(mask, associated_data, buffer);
use subtle::ConstantTimeEq;
if expected_tag[..TagSize::to_usize()].ct_eq(tag).into() {
ctr.apply_keystream_partial(buffer.into());
Ok(())
} else {
Err(Error)
}
}
}
impl<Aes, NonceSize, TagSize> AesGcm<Aes, NonceSize, TagSize>
where
Aes: BlockCipher + BlockSizeUser<BlockSize = U16> + BlockEncrypt,
NonceSize: ArrayLength<u8>,
TagSize: self::TagSize,
{
/// Initialize counter mode.
///
/// See algorithm described in Section 7.2 of NIST SP800-38D:
/// <https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf>
///
/// > Define a block, J0, as follows:
/// > If len(IV)=96, then J0 = IV || 0{31} || 1.
/// > If len(IV) ≠ 96, then let s = 128 ⎡len(IV)/128⎤-len(IV), and
/// > J0=GHASH(IV||0s+64||[len(IV)]64).
fn init_ctr(&self, nonce: &Nonce<NonceSize>) -> (Ctr32BE<&Aes>, Block) {
let j0 = if NonceSize::to_usize() == 12 {
let mut block = ghash::Block::default();
block[..12].copy_from_slice(nonce);
block[15] = 1;
block
} else {
let mut ghash = self.ghash.clone();
ghash.update_padded(nonce);
let mut block = ghash::Block::default();
let nonce_bits = (NonceSize::to_usize() as u64) * 8;
block[8..].copy_from_slice(&nonce_bits.to_be_bytes());
ghash.update(&[block]);
ghash.finalize()
};
let mut ctr = Ctr32BE::inner_iv_init(&self.cipher, &j0);
let mut tag_mask = Block::default();
ctr.write_keystream_block(&mut tag_mask);
(ctr, tag_mask)
}
/// Authenticate the given plaintext and associated data using GHASH.
fn compute_tag(&self, mask: Block, associated_data: &[u8], buffer: &[u8]) -> Tag {
let mut ghash = self.ghash.clone();
ghash.update_padded(associated_data);
ghash.update_padded(buffer);
let associated_data_bits = (associated_data.len() as u64) * 8;
let buffer_bits = (buffer.len() as u64) * 8;
let mut block = ghash::Block::default();
block[..8].copy_from_slice(&associated_data_bits.to_be_bytes());
block[8..].copy_from_slice(&buffer_bits.to_be_bytes());
ghash.update(&[block]);
let mut tag = ghash.finalize();
for (a, b) in tag.as_mut_slice().iter_mut().zip(mask.as_slice()) {
*a ^= *b;
}
tag
}
}
Related news
### Summary In the AES GCM implementation of decrypt_in_place_detached, the decrypted ciphertext (i.e. the correct plaintext) is exposed even if tag verification fails. ### Impact If a program using the `aes-gcm` crate's `decrypt_in_place*` APIs accesses the buffer after decryption failure, it will contain a decryption of an unauthenticated input. Depending on the specific nature of the program this may enable Chosen Ciphertext Attacks (CCAs) which can cause a catastrophic breakage of the cipher including full plaintext recovery. ### Details As seen in the implementation of [decrypt_in_place_detached](https://docs.rs/aes-gcm/latest/src/aes_gcm/lib.rs.html#309) for AES GCM, if the tag verification fails, an error is returned. Because the decryption of the ciphertext is done in place, the plaintext contents are now exposed via `buffer`. This should ideally not be the case - as noted in page 17 of[ NIST's publication _Recommendation for Block Cipher Modes of Operation: Galois/Counter...