Tag
#ssl
An issue was discovered in AgileBits 1Password, involving the method various 1Password apps and integrations used to create connections to the 1Password service. In specific circumstances, this issue allowed a malicious server to convince a 1Password app or integration it is communicating with the 1Password service.
In universal forwarder versions before 9.0, management services are available remotely by default. When not required, it introduces a potential exposure, but it is not a vulnerability. If exposed, we recommend each customer assess the potential severity specific to your environment. In 9.0, the universal forwarder now binds the management port to localhost preventing remote logins by default. If management services are not required in versions before 9.0, set disableDefaultPort = true in server.conf OR allowRemoteLogin = never in server.conf OR mgmtHostPort = localhost in web.conf. See Configure universal forwarder management security (https://docs.splunk.com/Documentation/Splunk/9.0.0/Security/EnableTLSCertHostnameValidation#Configure_universal_forwarder_management_security) for more information on disabling the remote management services.
Splunk Enterprise peers in Splunk Enterprise versions before 9.0 and Splunk Cloud Platform versions before 8.2.2203 did not validate the TLS certificates during Splunk-to-Splunk communications by default. Splunk peer communications configured properly with valid certificates were not vulnerable. However, an attacker with administrator credentials could add a peer without a valid certificate and connections from misconfigured nodes without valid certificates did not fail by default. For Splunk Enterprise, update to Splunk Enterprise version 9.0 and Configure TLS host name validation for Splunk-to-Splunk communications (https://docs.splunk.com/Documentation/Splunk/9.0.0/Security/EnableTLSCertHostnameValidation) to enable the remediation.
The httplib and urllib Python libraries that Splunk shipped with Splunk Enterprise did not validate certificates using the certificate authority (CA) certificate stores by default in Splunk Enterprise versions before 9.0 and Splunk Cloud Platform versions before 8.2.2203. Python 3 client libraries now verify server certificates by default and use the appropriate CA certificate stores for each library. Apps and add-ons that include their own HTTP libraries are not affected. For Splunk Enterprise, update to Splunk Enterprise version 9.0 and Configure TLS host name validation for Splunk-to-Splunk communications (https://docs.splunk.com/Documentation/Splunk/9.0.0/Security/EnableTLSCertHostnameValidation) to enable the remediation.
In Splunk Enterprise and Universal Forwarder versions before 9.0, the Splunk command-line interface (CLI) did not validate TLS certificates while connecting to a remote Splunk platform instance by default. Splunk peer communications configured properly with valid certificates were not vulnerable. However, connections from misconfigured nodes without valid certificates did not fail by default. After updating to version 9.0, see Configure TLS host name validation for the Splunk CLI (https://docs.splunk.com/Documentation/Splunk/9.0.0/Security/EnableTLSCertHostnameValidation#Configure_TLS_host_name_validation_for_the_Splunk_CLI) to enable the remediation.
Splunk Enterprise deployment servers in versions before 9.0 let clients deploy forwarder bundles to other deployment clients through the deployment server. An attacker that compromised a Universal Forwarder endpoint could use the vulnerability to execute arbitrary code on all other Universal Forwarder endpoints subscribed to the deployment server.
IBM AIX 7.1, 7.2, 7.3, and VIOS 3.1 could allow a local user to exploit a vulnerability in the lpd daemon to cause a denial of service. IBM X-Force ID: 224444.
The number and power of DDoS attacks keep growing at an incredible rate year over year. Recently a new HTTPS DDoS attack record was broken. The post Record breaking HTTPS DDoS attack appeared first on Malwarebytes Labs.
The optional ShellUserGroupProvider in Apache NiFi 1.10.0 to 1.16.2 and Apache NiFi Registry 0.6.0 to 1.16.2 does not neutralize arguments for group resolution commands, allowing injection of operating system commands on Linux and macOS platforms. The ShellUserGroupProvider is not included in the default configuration. Command injection requires ShellUserGroupProvider to be one of the enabled User Group Providers in the Authorizers configuration. Command injection also requires an authenticated user with elevated privileges. Apache NiFi requires an authenticated user with authorization to modify access policies in order to execute the command. Apache NiFi Registry requires an authenticated user with authorization to read user groups in order to execute the command. The resolution removes command formatting based on user-provided arguments.
An update for xz is now available for Red Hat Enterprise Linux 7. Red Hat Product Security has rated this update as having a security impact of Important. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-1271: gzip: arbitrary-file-write vulnerability