Security
Headlines
HeadlinesLatestCVEs

Headline

GHSA-49rq-hwc3-x77w: TensorFlow has Null Pointer Error in QuantizedMatMulWithBiasAndDequantize

Impact

NPE in QuantizedMatMulWithBiasAndDequantize with MKL enable

import tensorflow as tf

func = tf.raw_ops.QuantizedMatMulWithBiasAndDequantize
para={'a': tf.constant(138, dtype=tf.quint8), 'b': tf.constant(4, dtype=tf.qint8), 'bias': [[31.81644630432129, 47.21876525878906], [109.95201110839844, 152.07968139648438]], 'min_a': 141.5337138686371, 'max_a': [73.84139251708984, 173.15280151367188], 'min_b': [], 'max_b': [[16.128345489501953, 193.26820373535156]], 'min_freezed_output': [], 'max_freezed_output': [115.50032806396484, 156.974853515625], 'Toutput': 1.0, 'transpose_a': True, 'transpose_b': False, 'input_quant_mode': 'MIN_FIRST'}

func(**para)

Patches

We have patched the issue in GitHub commit 8a47a39d9697969206d23a523c977238717e8727.

The fix will be included in TensorFlow 2.12.0. We will also cherrypick this commit on TensorFlow 2.11.1

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by r3pwnx

ghsa
#vulnerability#git

Impact

NPE in QuantizedMatMulWithBiasAndDequantize with MKL enable

import tensorflow as tf

func = tf.raw_ops.QuantizedMatMulWithBiasAndDequantize para={’a’: tf.constant(138, dtype=tf.quint8), 'b’: tf.constant(4, dtype=tf.qint8), 'bias’: [[31.81644630432129, 47.21876525878906], [109.95201110839844, 152.07968139648438]], 'min_a’: 141.5337138686371, 'max_a’: [73.84139251708984, 173.15280151367188], 'min_b’: [], 'max_b’: [[16.128345489501953, 193.26820373535156]], 'min_freezed_output’: [], 'max_freezed_output’: [115.50032806396484, 156.974853515625], 'Toutput’: 1.0, 'transpose_a’: True, 'transpose_b’: False, 'input_quant_mode’: 'MIN_FIRST’}

func(**para)

Patches

We have patched the issue in GitHub commit 8a47a39d9697969206d23a523c977238717e8727.

The fix will be included in TensorFlow 2.12.0. We will also cherrypick this commit on TensorFlow 2.11.1

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by r3pwnx

References

  • GHSA-49rq-hwc3-x77w
  • tensorflow/tensorflow@8a47a39

Related news

CVE-2023-22062: Oracle Critical Patch Update Advisory - July 2023

Vulnerability in the Oracle Hyperion Financial Reporting product of Oracle Hyperion (component: Repository). The supported version that is affected is 11.2.13.0.000. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle Hyperion Financial Reporting. While the vulnerability is in Oracle Hyperion Financial Reporting, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Hyperion Financial Reporting accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Hyperion Financial Reporting. CVSS 3.1 Base Score 8.5 (Confidentiality and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:L).

CVE-2023-25670: Merge pull request #59437 from Intel-tensorflow:amin/fix-qmatmul · tensorflow/tensorflow@8a47a39

TensorFlow is an open source platform for machine learning. Versions prior to 2.12.0 and 2.11.1 have a null point error in QuantizedMatMulWithBiasAndDequantize with MKL enabled. A fix is included in TensorFlow version 2.12.0 and version 2.11.1.