Headline
CVE-2022-26342: TALOS-2022-1484 || Cisco Talos Intelligence Group
A buffer overflow vulnerability exists in the confsrv ucloud_set_node_location functionality of TCL LinkHub Mesh Wi-Fi MS1G_00_01.00_14. A specially-crafted network packet can lead to a buffer overflow. An attacker can send a malicious packet to trigger this vulnerability.
SUMMARY
A buffer overflow vulnerability exists in the confsrv ucloud_set_node_location functionality of TCL LinkHub Mesh Wi-Fi MS1G_00_01.00_14. A specially-crafted network packet can lead to a buffer overflow. An attacker can send a malicious packet to trigger this vulnerability.
CONFIRMED VULNERABLE VERSIONS
The versions below were either tested or verified to be vulnerable by Talos or confirmed to be vulnerable by the vendor.
TCL LinkHub Mesh Wifi MS1G_00_01.00_14
PRODUCT URLS
LinkHub Mesh Wifi - https://www.tcl.com/us/en/products/connected-home/linkhub/linkhub-mesh-wifi-system-3-pack
CVSSv3 SCORE
8.8 - CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CWE
CWE-120 - Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’)
DETAILS
The LinkHub Mesh Wi-Fi system is a node-based mesh system designed for Wi-Fi deployments across large homes. These nodes include most features standard in current Wi-Fi solutions and allow for easy expansion of the system by adding nodes. The mesh is managed solely by a phone application, and the routers have no web-based management console.
The LinkHub Mesh system uses protobuffers to communicate both internally on the device as well as externally with the controlling phone application. These protobuffers can be sent to port 9003 while on the Wi-Fi provided by the LinkHub Mesh in order to issue commands, much like the phone application would. Once the protobuffer is received, it is routed internally starting from the ucloud binary and is dispatched to the appropriate handler.
In this case, the handler is confsrv which handles many message types. In this case we are interested in NodeLocation
message NodeLocation {
required string serialNum = 1;
required string location = 2; [1]
optional uint64 timestamp = 3;
}
Using [1] we have control over location in the packet. The parsing of the data in the protobuf is done in ucloud_set_node_location.
00429390 int32_t ucloud_set_node_location(int32_t arg1, int32_t arg2, int32_t arg3)
004293b0 arg_0 = arg1
004293bc int32_t $a3
004293bc arg_c = $a3
004293c0 int32_t var_12c = 0
004293c4 int32_t var_128 = 0
004293c8 int32_t var_124 = 0
004293cc int32_t var_120 = 0
004293d0 int32_t var_11c = 0
004293d4 int32_t var_118 = 0
004293d8 int32_t var_114 = 0
004293dc int32_t var_110 = 0
004293e0 int32_t var_10c = 0
004293e4 int32_t var_130 = 0
00429404 void var_108
00429404 memset(&var_108, 0, 0x100)
00429428 GetValue(name: "serial.number", output_buffer: &var_128)
00429450 struct NodeLocationDescriptor* pkt = node_location__unpack(0, arg3, arg2)
00429464 int32_t $v0_2
00429464 if (pkt == 0) {
0042948c _td_snprintf(3, "api/map_manage.c", 0x83a, " unpack failed ! \n", 0x4ae4b0)
00429498 $v0_2 = 0xffffffff
00429498 } else {
004294b8 void* $v0_5 = client_sn_lkup(sn: pkt->serial_number)
004294cc if ($v0_5 != 0) {
004294f4 strcpy($v0_5 + 0x30, pkt->location) [2]
0042950c if (sx.d(*($v0_5 + 0x30)) == 0) {
00429544 *($v0_5 + 4) = *($v0_5 + 4) & 0xfffffffd
0042953c } else {
00429524 *($v0_5 + 4) = *($v0_5 + 4) | 2
0042951c }
0042951c }
...
At [2] we can clearly see that a strcpy is performed without any validation of buffer or input length, which can lead to a buffer overflow. Below we can verify the issue in ASM:
004294a4 1c00c28f lw $v0, 0x1c($fp) {var_12c_1}
004294a8 0c00428c lw $v0, 0xc($v0) {NodeLocationDescriptor::serial_number}
004294ac 21204000 move $a0, $v0
004294b0 4883828f lw $v0, -0x7cb8($gp) {client_sn_lkup} {data_4a67f8}
004294b4 21c84000 move $t9, $v0 {client_sn_lkup}
004294b8 09f82003 jalr $t9 {client_sn_lkup}
004294bc 00000000 nop
004294c0 1000dc8f lw $gp, 0x10($fp) {var_138}
004294c4 1800c2af sw $v0, 0x18($fp) {var_130_1} [3]
004294c8 1800c28f lw $v0, 0x18($fp) {var_130_1}
004294cc 1e004010 beqz $v0, 0x429548
004294d0 00000000 nop
004294d4 1800c28f lw $v0, 0x18($fp) {var_130_1} [4]
004294d8 30004324 addiu $v1, $v0, 0x30
004294dc 1c00c28f lw $v0, 0x1c($fp) {var_12c_1}
004294e0 1000428c lw $v0, 0x10($v0) {NodeLocationDescriptor::location} [5]
004294e4 21206000 move $a0, $v1
004294e8 21284000 move $a1, $v0
004294ec 7c86828f lw $v0, -0x7984($gp) {strcpy}
004294f0 21c84000 move $t9, $v0
004294f4 09f82003 jalr $t9 [6]
004294f8 00000000 nop
At [3] we see the return value of client_sn_lkup being saved onto the stack that is loaded at [4] to be the destination argument of strcpy. At [5] the location is loaded from the protobuf data and used as the source for the strcpy. At [6] we see that strcpy is called with no further validation or verification that the buffer is large enough to hold the data, or that the source is small enough to fit in the buffer. This leads to a simple buffer overflow using strcpy.
The destination buffer for the overflow is retrieved from client_sn_lkup, seen below.
00422c30 void* client_sn_lkup(char* sn)
00422c54 int32_t var_10 = 0
00422c60 uint32_t var_10_1 = g_online_map_head
00422cb8 uint32_t $v0_4
00422cb8 while (true) {
00422cb8 if (var_10_1 == 0) {
00422cc0 $v0_4 = 0
00422cc0 break
00422cc0 }
00422c94 if (strncmp(sn, var_10_1 + 8, 0x20) == 0) {
00422c9c $v0_4 = var_10_1
00422ca0 break
00422ca0 }
00422cb0 var_10_1 = *var_10_1
00422cac }
00422cd4 return $v0_4
g_online_map_head is located within the BSS section of the binary. This means that with this buffer overflow we can target any other statically allocated variable within the binary, which can lead to remote code execution.
Crash Information
Program received signal SIGSEGV, Segmentation fault.
0x779493f0 in strncmp () from target:/lib/libc.so.0
[ Legend: Modified register | Code | Heap | Stack | String ]
───────────────────────────────────────────────────────────────────────────────────────────────────────── registers ────
$zero: 0x0
$at : 0x806f0000
$v0 : 0x32
$v1 : 0x41
$a0 : 0x004ba150 → "21012304710"
$a1 : 0x41414149 ("IAAA"?)
$a2 : 0x20
$a3 : 0x7
$t0 : 0x0
$t1 : 0x0
$t2 : 0x200
$t3 : 0x100
$t4 : 0x807
$t5 : 0x800
$t6 : 0x400
$t7 : 0x8
$s0 : 0x7fddaaa8 → 0x82031107
$s1 : 0x7fddaaa8 → 0x82031107
$s2 : 0x77d7aa60 → "uc_api_lib.c"
$s3 : 0x0
$s4 : 0x77d7bbe4 → "_session_read_and_dispatch"
$s5 : 0x77d61090 → 0x3c1c0003
$s6 : 0x1018
$s7 : 0x10
$t8 : 0x0
$t9 : 0x779493d0 → 0x2cc20004
$k0 : 0x0
$k1 : 0x0
$s8 : 0x7fdda6d0 → 0x00000000
$pc : 0x779493f0 → 0x1040001d
$sp : 0x7fdda6d0 → 0x00000000
$hi : 0x169
$lo : 0x25512
$fir : 0x0
$ra : 0x00422c90 → <client_sn_lkup+96> lw gp, 16(s8)
$gp : 0x004ae4b0 → 0x00000000
───────────────────────────────────────────────────────────────────────────────────────────────────────────── stack ────
0x7fdda6d0│+0x0000: 0x00000000 ← $s8, $sp
0x7fdda6d4│+0x0004: 0x00000000
0x7fdda6d8│+0x0008: 0x00000000
0x7fdda6dc│+0x000c: 0x00000000
0x7fdda6e0│+0x0010: 0x004ae4b0 → 0x00000000
0x7fdda6e4│+0x0014: 0x00000000
0x7fdda6e8│+0x0018: "AAAA"
0x7fdda6ec│+0x001c: 0x00000000
────────────────────────────────────────────────────────────────────────────────────────────────── code:mips:MIPS32 ────
0x779493e4 <strncmp+20> move v0, zero
0x779493e8 <strncmp+24> lbu v0, 0(a0)
0x779493ec <strncmp+28> addiu a3, a3, -1
TIMELINE
2022-03-16 - Vendor Disclosure
2022-08-01 - Public Release
Discovered by Carl Hurd of Cisco Talos.
Related news
Given the privileged position these devices occupy on the networks they serve, they are prime targets for attackers, so their security posture is of paramount importance.