Headline
CVE-2022-25996: TALOS-2022-1482 || Cisco Talos Intelligence Group
A stack-based buffer overflow vulnerability exists in the confsrv addTimeGroup functionality of TCL LinkHub Mesh Wi-Fi MS1G_00_01.00_14. A specially-crafted network packet can lead to a buffer overflow. An attacker can send a malicious packet to trigger this vulnerability.
SUMMARY
A stack-based buffer overflow vulnerability exists in the confsrv addTimeGroup functionality of TCL LinkHub Mesh Wi-Fi MS1G_00_01.00_14. A specially-crafted network packet can lead to a buffer overflow. An attacker can send a malicious packet to trigger this vulnerability.
CONFIRMED VULNERABLE VERSIONS
The versions below were either tested or verified to be vulnerable by Talos or confirmed to be vulnerable by the vendor.
TCL LinkHub Mesh Wifi MS1G_00_01.00_14
PRODUCT URLS
LinkHub Mesh Wifi - https://www.tcl.com/us/en/products/connected-home/linkhub/linkhub-mesh-wifi-system-3-pack
CVSSv3 SCORE
8.8 - CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CWE
CWE-121 - Stack-based Buffer Overflow
DETAILS
The LinkHub Mesh Wi-Fi system is a node-based mesh system designed for Wi-Fi deployments across large homes. These nodes include most features standard in current Wi-Fi solutions and allow for easy expansion of the system by adding nodes. The mesh is managed solely by a phone application, and the routers have no web-based management console.
The LinkHub Mesh system uses protobuffers to communicate both internally on the device as well as externally with the controlling phone application. These protobuffers can be sent to port 9003 while on the Wi-Fi provided by the LinkHub Mesh in order to issue commands, much like the phone application would. Once the protobuffer is received, it is routed internally starting from the ucloud binary and is dispatched to the appropriate handler.
In this case, the handler is confsrv which handles many message types. In this case we are interested in TimeGroup and TimeRule
message TimeRule {
required int32 id = 1;
required string desc = 2;
required bool enable = 3;
required string week = 4; [1]
required int32 begin_in_min = 5;
required int32 end_in_min = 6;
}
message TimeGroup {
repeated TimeRule tm_rule = 1;
optional uint64 timestamp = 2;
}
Using [1] we have control over week in the packet. The parsing of the data in the protobuf is done in set_time_group_rule.
0041acb8 int32_t set_time_group_rule(struct TimeGroup* pkt)
0041acf8 void var_e4
0041acf8 memset(&var_e4, 0, 0x80)
0041ad04 int32_t var_e8 = 0
0041ad08 int32_t var_ec = 0
0041ad0c int32_t var_f0 = 0
0041ad10 int32_t var_64 = 0
0041ad14 int32_t var_60 = 0
0041ad18 int32_t var_5c = 0
0041ad1c int32_t var_58 = 0
0041ad20 int32_t var_54 = 0
0041ad24 int32_t var_50 = 0
0041ad40 GetValue(name: "log.time.enable", output_buffer: &var_5c)
0041ad70 if (atoi(&var_5c) == 1) {
0041ada0 printf("Debug->%s: %s(%d)--\n", "../conf_time_group_api.c", "set_time_group_rule", 0xba)
0041ad94 }
0041af58 uint32_t var_100
0041af58 for (int32_t loop_idx = 0; loop_idx u< pkt->tm_rule_count; loop_idx = loop_idx + 1) {
0041adcc struct TimeRule* $v0_5 = *(pkt->tm_rules + (loop_idx << 2))
0041add4 int32_t var_4c = 0
0041add8 int32_t var_48_1 = 0
0041addc int32_t var_44_1 = 0
0041ade0 int32_t var_40_1 = 0
0041adfc GetValue(name: "log.time.enable", output_buffer: &var_4c)
0041ae2c if (atoi(&var_4c) == 1) {
0041ae44 var_100 = pkt->tm_rule_count
0041ae68 printf("Debug->%s: %s(%d)--\nn_tm_rule =…", "../conf_time_group_api.c", "set_time_group_rule", 0xbf, var_100)
0041ae68 }
0041ae78 if ($v0_5 != 0) {
0041ae90 addTimeGroup($v0_5, var_ec) [2]
...
At [2] the parsing is passed off to addTimeGroup if the TimeGroup reports having more than 0 tm_rule. The TimeRule protobuffer is passed into addTimeGroup for further parsing.
00419eb4 int32_t addTimeGroup(struct TimeRule* arg1, int32_t arg2)
00419ef8 uint8_t var_108[0x80]
00419ef8 memset(&var_108, 0, 0x80)
00419f04 uint8_t var_88[0x20]
00419f04 var_88[0].d = 0
00419f08 var_88[4].d = 0
00419f0c var_88[8].d = 0
00419f10 var_88[0xc].d = 0
00419f14 var_88[0x10].d = 0
00419f18 var_88[0x14].d = 0
00419f1c var_88[0x18].d = 0
00419f20 var_88[0x1c].d = 0
00419f24 int32_t var_68 = 0
00419f28 int32_t var_64 = 0
00419f2c int32_t var_60 = 0
00419f30 int32_t var_5c = 0
00419f34 int32_t var_58 = 0
00419f38 int32_t var_54 = 0
00419f44 char var_50 = 0
00419f48 char var_4f = 0
00419f4c char var_4e = 0
00419f50 char var_4d = 0
00419f54 char var_4c = 0
00419f58 char var_4b = 0
00419f5c char var_4a = 0
00419f60 char var_49 = 0
00419f64 int32_t var_10c = 0
00419f68 int32_t var_110 = 0
00419f6c int32_t var_48 = 0
00419f70 int32_t var_44 = 0
00419f74 int32_t var_40 = 0
00419f78 int32_t var_3c = 0
00419f7c int32_t var_38 = 0
00419f80 int32_t var_34 = 0
00419f84 int32_t var_30 = 0
00419f88 int32_t var_2c = 0
00419f8c int32_t var_28 = 0
00419f90 int32_t var_24 = 0
00419f94 int32_t var_20 = 0
00419f98 int32_t var_1c = 0
00419fb4 GetValue(name: "log.time.enable", output_buffer: &var_28)
00419fe4 if (atoi(&var_28) == 1) {
0041a014 printf("Debug->%s: %s(%d)--\n", "../conf_time_group_api.c", "addTimeGroup", 0x38)
0041a008 }
0041a028 if (arg1->week != 0) {
0041a04c strcpy(&var_68, arg1->week) [3]
0041a034 }
...
At [3] we can clearly see that if week is populated within the TimeRule protobuf, a strcpy is performed without any validation of buffer or input length, which can lead to a stack-based buffer overflow. Below we can verify the issue in ASM:
0041a024 1800428c lw $v0, 0x18($v0) {TimeRule::week} [4]
0041a028 0b004010 beqz $v0, 0x41a058
0041a02c 00000000 nop
0041a030 4001c28f lw $v0, 0x140($fp) {arg_0}
0041a034 1800428c lw $v0, 0x18($v0) {TimeRule::week}
0041a038 d800c327 addiu $v1, $fp, 0xd8 {var_68}
0041a03c 21206000 move $a0, $v1 {var_68} [5]
0041a040 21284000 move $a1, $v0
0041a044 7c86828f lw $v0, -0x7984($gp) {strcpy}
0041a048 21c84000 move $t9, $v0
0041a04c 09f82003 jalr $t9 [6]
0041a050 00000000 nop
At [4] we see that the week value is loaded from the protobuf and checked to see if it is non-zero. At [5] the stack-buffer is being loaded as the dst argument for strcpy, and at [6] we see that strcpy is being called with no additional validation or verification of the buffer or input length. This leads to a simple stack-based buffer overflow.
Crash Information
Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
[ Legend: Modified register | Code | Heap | Stack | String ]
───────────────────────────────────────────────────────────────────────────────────────────────────────── registers ────
$zero: 0x0
$at : 0x806f0000
$v0 : 0x1
$v1 : 0x0
$a0 : 0x0
$a1 : 0x7fffffff
$a2 : 0xa
$a3 : 0x1
$t0 : 0x7fadd019 → 0x00000000
$t1 : 0x7fadd018 → 0x00000000
$t2 : 0x5
$t3 : 0x19999999
$t4 : 0x777fa8e4 → 0x0000000b ("
"?)
$t5 : 0x0
$t6 : 0x22
$t7 : 0x0
$s0 : 0x7fadd348 → 0x82011607
$s1 : 0x7fadd348 → 0x82011607
$s2 : 0x77612a60 → "uc_api_lib.c"
$s3 : 0x0
$s4 : 0x77613be4 → "_session_read_and_dispatch"
$s5 : 0x775f9090 → lui gp, 0x3
$s6 : 0x7e
$s7 : 0x10
$t8 : 0x1
$t9 : 0x0
$k0 : 0x0
$k1 : 0x0
$s8 : 0x41414141 ("AAAA"?)
$pc : 0x41414141 ("AAAA"?)
$sp : 0x7fadd030 → 0x004bb900 → 0x004bba68 → "CMD_MESH_WLAN_SET"
$hi : 0x5
$lo : 0x19999999
$fir : 0x0
$ra : 0x41414141 ("AAAA"?)
$gp : 0x004ae4b0 → 0x00000000
───────────────────────────────────────────────────────────────────────────────────────────────────────────── stack ────
0x7fadd030│+0x0000: 0x004bb900 → 0x004bba68 → "CMD_MESH_WLAN_SET" ← $sp
0x7fadd034│+0x0004: 0x00000000
0x7fadd038│+0x0008: 0x00000000
0x7fadd03c│+0x000c: 0x00000000
0x7fadd040│+0x0010: 0x00000000
0x7fadd044│+0x0014: 0x00000000
0x7fadd048│+0x0018: 0x004ae4b0 → 0x00000000
0x7fadd04c│+0x001c: 0x00000000
────────────────────────────────────────────────────────────────────────────────────────────────── code:mips:MIPS32 ────
[!] Cannot disassemble from $PC
[!] Cannot access memory at address 0x41414140
─────────────────────────────────────────────────────────────────────────────────────────────────────────── threads ────
[#0] Id 1, stopped 0x41414141 in ?? (), reason: SIGSEGV
───────────────────────────────────────────────────────────────────────────────────────────────────────────── trace ────
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
TIMELINE
2022-03-16 - Vendor Disclosure
2022-08-01 - Public Release
Discovered by Carl Hurd of Cisco Talos.
Related news
Given the privileged position these devices occupy on the networks they serve, they are prime targets for attackers, so their security posture is of paramount importance.