Headline
CVE-2020-8908: Deprecate Files.createTempDir(), noting that better alternatives exis… · google/guava@fec0dbc
A temp directory creation vulnerability exists in all versions of Guava, allowing an attacker with access to the machine to potentially access data in a temporary directory created by the Guava API com.google.common.io.Files.createTempDir(). By default, on unix-like systems, the created directory is world-readable (readable by an attacker with access to the system). The method in question has been marked @Deprecated in versions 30.0 and later and should not be used. For Android developers, we recommend choosing a temporary directory API provided by Android, such as context.getCacheDir(). For other Java developers, we recommend migrating to the Java 7 API java.nio.file.Files.createTempDirectory() which explicitly configures permissions of 700, or configuring the Java runtime’s java.io.tmpdir system property to point to a location whose permissions are appropriately configured.
Expand Up
@@ -398,6 +398,11 @@ public static boolean equal(File file1, File file2) throws IOException {
* be exploited to create security vulnerabilities, especially when executable files are to be
* written into the directory.
*
* <p>Depending on the environmment that this code is run in, the system temporary directory (and
* thus the directory this method creates) may be more visible that a program would like - files
* written to this directory may be read or overwritten by hostile programs running on the same
* machine.
*
* <p>This method assumes that the temporary volume is writable, has free inodes and free blocks,
* and that it will not be called thousands of times per second.
*
Expand All
@@ -406,8 +411,15 @@ public static boolean equal(File file1, File file2) throws IOException {
*
* @return the newly-created directory
* @throws IllegalStateException if the directory could not be created
* @deprecated For Android users, see the <a
* href="https://developer.android.com/training/data-storage" target="_blank">Data and File
* Storage overview</a> to select an appropriate temporary directory (perhaps {@code
* context.getCacheDir()}). For developers on Java 7 or later, use {@link
* java.nio.file.Files#createTempDirectory}, transforming it to a {@link File} using {@link
* java.nio.file.Path#toFile() toFile()} if needed.
*/
@Beta
@Deprecated
public static File createTempDir() {
File baseDir = new File(System.getProperty(“java.io.tmpdir”));
@SuppressWarnings(“GoodTime”) // reading system time without TimeSource
Expand Down
Related news
Vulnerability in the Oracle Hyperion Financial Reporting product of Oracle Hyperion (component: Repository). The supported version that is affected is 11.2.13.0.000. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle Hyperion Financial Reporting. While the vulnerability is in Oracle Hyperion Financial Reporting, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Hyperion Financial Reporting accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Hyperion Financial Reporting. CVSS 3.1 Base Score 8.5 (Confidentiality and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:L).
Use of Java's default temporary directory for file creation in `FileBackedOutputStream` in Google Guava versions 1.0 to 31.1 on Unix systems and Android Ice Cream Sandwich allows other users and apps on the machine with access to the default Java temporary directory to be able to access the files created by the class. Even though the security vulnerability is fixed in version 32.0.0, we recommend using version 32.0.1 as version 32.0.0 breaks some functionality under Windows.
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u361, 8u361-perf, 11.0.18, 17.0.6; Oracle GraalVM Enterprise Edition: 20.3.9, 21.3.5 and 22.3.1. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through...
Dell Streaming Data Platform prior to 1.4 contains Open Redirect vulnerability. An attacker with privileges same as a legitimate user can phish the legitimate the user to redirect to malicious website leading to information disclosure and launch of phishing attacks.
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: JNDI). Supported versions that are affected are Oracle Java SE: 7u331, 8u321, 11.0.14, 17.0.2, 18; Oracle GraalVM Enterprise Edition: 20.3.5, 21.3.1 and 22.0.0.2. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service ...
Vulnerability in the MySQL Connectors product of Oracle MySQL (component: Connector/J). Supported versions that are affected are 8.0.27 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Connectors. Successful attacks of this vulnerability can result in takeover of MySQL Connectors. CVSS 3.1 Base Score 6.6 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:H/I:H/A:H).
Vulnerability in the Oracle Database Enterprise Edition Unified Audit component of Oracle Database Server. Supported versions that are affected are 12.1.0.2, 12.2.0.1 and 19c. Easily exploitable vulnerability allows high privileged attacker having Local Logon privilege with network access via Oracle Net to compromise Oracle Database Enterprise Edition Unified Audit. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Database Enterprise Edition Unified Audit accessible data. CVSS 3.1 Base Score 2.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:L/A:N).
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Library). Supported versions that are affected are Java SE: 7u301, 8u291, 11.0.11, 16.0.1; Oracle GraalVM Enterprise Edition: 20.3.2 and 21.1.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically i...
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: DML). Supported versions that are affected are 5.7.33 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
Vulnerability in the Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 7u291, 8u281, 11.0.10, 16; Java SE Embedded: 8u281; Oracle GraalVM Enterprise Edition: 19.3.5, 20.3.1.2 and 21.0.0.2. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Java SE, Java SE Embedded, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 5.3 (Integrity impacts). CV...
A temp directory creation vulnerability exists in all versions of Guava, allowing an attacker with access to the machine to potentially access data in a temporary directory created by the Guava API com.google.common.io.Files.createTempDir(). By default, on unix-like systems, the created directory is world-readable (readable by an attacker with access to the system). The method in question has been marked @Deprecated in versions 30.0 and later and should not be used. For Android developers, we recommend choosing a temporary directory API provided by Android, such as context.getCacheDir(). For other Java developers, we recommend migrating to the Java 7 API java.nio.file.Files.createTempDirectory() which explicitly configures permissions of 700, or configuring the Java runtime's java.io.tmpdir system property to point to a location whose permissions are appropriately configured.