Headline
CVE-2019-1559
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable “non-stitched” ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).
OpenSSL Security Advisory [26 February 2019] ============================================ 0-byte record padding oracle (CVE-2019-1559) ============================================ Severity: Moderate If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable “non-stitched” ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). AEAD ciphersuites are not impacted. This issue does not impact OpenSSL 1.1.1 or 1.1.0. OpenSSL 1.0.2 users should upgrade to 1.0.2r. This issue was discovered by Juraj Somorovsky, Robert Merget and Nimrod Aviram, with additional investigation by Steven Collison and Andrew Hourselt. It was reported to OpenSSL on 10th December 2018. Note: Advisory updated to make it clearer that AEAD ciphersuites are not impacted. Note ==== OpenSSL 1.0.2 and 1.1.0 are currently only receiving security updates. Support for 1.0.2 will end on 31st December 2019. Support for 1.1.0 will end on 11th September 2019. Users of these versions should upgrade to OpenSSL 1.1.1. References ========== URL for this Security Advisory: https://www.openssl.org/news/secadv/20190226.txt Note: the online version of the advisory may be updated with additional details over time. For details of OpenSSL severity classifications please see: https://www.openssl.org/policies/secpolicy.html
Related news
IBM Security Verify Governance 10.0 does not encrypt sensitive or critical information before storage or transmission. IBM X-Force ID: 256020.
Progress Chef Infra Server before 15.7 allows a local attacker to exploit a /var/opt/opscode/local-mode-cache/backup world-readable temporary backup path to access sensitive information, resulting in the disclosure of all indexed node data, because OpenSearch credentials are exposed. (The data typically includes credentials for additional systems.) The attacker must wait for an admin to run the "chef-server-ctl reconfigure" command.
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). The supported version that is affected is Prior to 6.1.18. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data. CVSS 3.1 Base Score 6.0 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:N/A:N).
Vulnerability in the Oracle WebLogic Server product of Oracle Fusion Middleware (component: WLS Core Components). The supported version that is affected is 10.3.6.0.0. Easily exploitable vulnerability allows high privileged attacker with network access via HTTP to compromise Oracle WebLogic Server. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle WebLogic Server, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle WebLogic Server accessible data as well as unauthorized read access to a subset of Oracle WebLogic Server accessible data. CVSS 3.0 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:R/S:C/C:L/I:L/A:N).
Vulnerability in the Java SE product of Oracle Java SE (component: Javadoc). Supported versions that are affected are Java SE: 7u231, 8u221, 11.0.4 and 13. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Java SE accessible data as well as unauthorized read access to a subset of Java SE accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets (in Java SE 8), that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Ja...
Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Server: Optimizer). Supported versions that are affected are 8.0.16 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: InnoDB). Supported versions that are affected are 5.7.25 and prior and 8.0.15 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.0 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).