Security
Headlines
HeadlinesLatestCVEs

Headline

CVE-2022-37434: node/inflate.c at 75b68c6e4db515f76df73af476eccf382bbcb00a · nodejs/node

zlib through 1.2.12 has a heap-based buffer over-read or buffer overflow in inflate in inflate.c via a large gzip header extra field. NOTE: only applications that call inflateGetHeader are affected. Some common applications bundle the affected zlib source code but may be unable to call inflateGetHeader (e.g., see the nodejs/node reference).

CVE
#mac#nodejs#js#java#intel#buffer_overflow

/* inflate.c – zlib decompression * Copyright © 1995-2016 Mark Adler * For conditions of distribution and use, see copyright notice in zlib.h */ /* * Change history: * * 1.2.beta0 24 Nov 2002 * - First version – complete rewrite of inflate to simplify code, avoid * creation of window when not needed, minimize use of window when it is * needed, make inffast.c even faster, implement gzip decoding, and to * improve code readability and style over the previous zlib inflate code * * 1.2.beta1 25 Nov 2002 * - Use pointers for available input and output checking in inffast.c * - Remove input and output counters in inffast.c * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 * - Remove unnecessary second byte pull from length extra in inffast.c * - Unroll direct copy to three copies per loop in inffast.c * * 1.2.beta2 4 Dec 2002 * - Change external routine names to reduce potential conflicts * - Correct filename to inffixed.h for fixed tables in inflate.c * - Make hbuf[] unsigned char to match parameter type in inflate.c * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) * to avoid negation problem on Alphas (64 bit) in inflate.c * * 1.2.beta3 22 Dec 2002 * - Add comments on state->bits assertion in inffast.c * - Add comments on op field in inftrees.h * - Fix bug in reuse of allocated window after inflateReset() * - Remove bit fields–back to byte structure for speed * - Remove distance extra == 0 check in inflate_fast()–only helps for lengths * - Change post-increments to pre-increments in inflate_fast(), PPC biased? * - Add compile time option, POSTINC, to use post-increments instead (Intel?) * - Make MATCH copy in inflate() much faster for when inflate_fast() not used * - Use local copies of stream next and avail values, as well as local bit * buffer and bit count in inflate()–for speed when inflate_fast() not used * * 1.2.beta4 1 Jan 2003 * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings * - Move a comment on output buffer sizes from inffast.c to inflate.c * - Add comments in inffast.c to introduce the inflate_fast() routine * - Rearrange window copies in inflate_fast() for speed and simplification * - Unroll last copy for window match in inflate_fast() * - Use local copies of window variables in inflate_fast() for speed * - Pull out common wnext == 0 case for speed in inflate_fast() * - Make op and len in inflate_fast() unsigned for consistency * - Add FAR to lcode and dcode declarations in inflate_fast() * - Simplified bad distance check in inflate_fast() * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new * source file infback.c to provide a call-back interface to inflate for * programs like gzip and unzip – uses window as output buffer to avoid * window copying * * 1.2.beta5 1 Jan 2003 * - Improved inflateBack() interface to allow the caller to provide initial * input in strm. * - Fixed stored blocks bug in inflateBack() * * 1.2.beta6 4 Jan 2003 * - Added comments in inffast.c on effectiveness of POSTINC * - Typecasting all around to reduce compiler warnings * - Changed loops from while (1) or do {} while (1) to for (;;), again to * make compilers happy * - Changed type of window in inflateBackInit() to unsigned char * * * 1.2.beta7 27 Jan 2003 * - Changed many types to unsigned or unsigned short to avoid warnings * - Added inflateCopy() function * * 1.2.0 9 Mar 2003 * - Changed inflateBack() interface to provide separate opaque descriptors * for the in() and out() functions * - Changed inflateBack() argument and in_func typedef to swap the length * and buffer address return values for the input function * - Check next_in and next_out for Z_NULL on entry to inflate() * * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. */ #include “zutil.h” #include “inftrees.h” #include “inflate.h” #include “inffast.h” #ifdef MAKEFIXED # ifndef BUILDFIXED # define BUILDFIXED # endif #endif /* function prototypes */ local int inflateStateCheck OF((z_streamp strm)); local void fixedtables OF((struct inflate_state FAR *state)); local int updatewindow OF((z_streamp strm, const unsigned char FAR *end, unsigned copy)); #ifdef BUILDFIXED void makefixed OF((void)); #endif local unsigned syncsearch OF((unsigned FAR *have, const unsigned char FAR *buf, unsigned len)); local int inflateStateCheck(strm) z_streamp strm; { struct inflate_state FAR *state; if (strm == Z_NULL || strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) return 1; state = (struct inflate_state FAR *)strm->state; if (state == Z_NULL || state->strm != strm || state->mode < HEAD || state->mode > SYNC) return 1; return 0; } int ZEXPORT inflateResetKeep(strm) z_streamp strm; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; strm->total_in = strm->total_out = state->total = 0; strm->msg = Z_NULL; if (state->wrap) /* to support ill-conceived Java test suite */ strm->adler = state->wrap & 1; state->mode = HEAD; state->last = 0; state->havedict = 0; state->dmax = 32768U; state->head = Z_NULL; state->hold = 0; state->bits = 0; state->lencode = state->distcode = state->next = state->codes; state->sane = 1; state->back = -1; Tracev((stderr, “inflate: reset\n”)); return Z_OK; } int ZEXPORT inflateReset(strm) z_streamp strm; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; state->wsize = 0; state->whave = 0; state->wnext = 0; return inflateResetKeep(strm); } int ZEXPORT inflateReset2(strm, windowBits) z_streamp strm; int windowBits; { int wrap; struct inflate_state FAR *state; /* get the state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 5; #ifdef GUNZIP if (windowBits < 48) windowBits &= 15; #endif } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) return Z_STREAM_ERROR; if (state->window != Z_NULL && state->wbits != (unsigned)windowBits) { ZFREE(strm, state->window); state->window = Z_NULL; } /* update state and reset the rest of it */ state->wrap = wrap; state->wbits = (unsigned)windowBits; return inflateReset(strm); } int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) z_streamp strm; int windowBits; const char *version; int stream_size; { int ret; struct inflate_state FAR *state; if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || stream_size != (int)(sizeof(z_stream))) return Z_VERSION_ERROR; if (strm == Z_NULL) return Z_STREAM_ERROR; strm->msg = Z_NULL; /* in case we return an error */ if (strm->zalloc == (alloc_func)0) { #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zalloc = zcalloc; strm->opaque = (voidpf)0; #endif } if (strm->zfree == (free_func)0) #ifdef Z_SOLO return Z_STREAM_ERROR; #else strm->zfree = zcfree; #endif state = (struct inflate_state FAR *) ZALLOC(strm, 1, sizeof(struct inflate_state)); if (state == Z_NULL) return Z_MEM_ERROR; Tracev((stderr, “inflate: allocated\n”)); strm->state = (struct internal_state FAR *)state; state->strm = strm; state->window = Z_NULL; state->mode = HEAD; /* to pass state test in inflateReset2() */ state->check = 1L; /* 1L is the result of adler32() zero length data */ ret = inflateReset2(strm, windowBits); if (ret != Z_OK) { ZFREE(strm, state); strm->state = Z_NULL; } return ret; } int ZEXPORT inflateInit_(strm, version, stream_size) z_streamp strm; const char *version; int stream_size; { return inflateInit2_(strm, DEF_WBITS, version, stream_size); } int ZEXPORT inflatePrime(strm, bits, value) z_streamp strm; int bits; int value; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (bits < 0) { state->hold = 0; state->bits = 0; return Z_OK; } if (bits > 16 || state->bits + (uInt)bits > 32) return Z_STREAM_ERROR; value &= (1L << bits) - 1; state->hold += (unsigned)value << state->bits; state->bits += (uInt)bits; return Z_OK; } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it’s called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ local void fixedtables(state) struct inflate_state FAR *state; { #ifdef BUILDFIXED static int virgin = 1; static code *lenfix, *distfix; static code fixed[544]; /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { unsigned sym, bits; static code *next; /* literal/length table */ sym = 0; while (sym < 144) state->lens[sym++] = 8; while (sym < 256) state->lens[sym++] = 9; while (sym < 280) state->lens[sym++] = 7; while (sym < 288) state->lens[sym++] = 8; next = fixed; lenfix = next; bits = 9; inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); /* distance table */ sym = 0; while (sym < 32) state->lens[sym++] = 5; distfix = next; bits = 5; inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); /* do this just once */ virgin = 0; } #else /* !BUILDFIXED */ # include “inffixed.h” #endif /* BUILDFIXED */ state->lencode = lenfix; state->lenbits = 9; state->distcode = distfix; state->distbits = 5; } #ifdef MAKEFIXED #include <stdio.h> /* Write out the inffixed.h that is #include’d above. Defining MAKEFIXED also defines BUILDFIXED, so the tables are built on the fly. makefixed() writes those tables to stdout, which would be piped to inffixed.h. A small program can simply call makefixed to do this: void makefixed(void); int main(void) { makefixed(); return 0; } Then that can be linked with zlib built with MAKEFIXED defined and run: a.out > inffixed.h */ void makefixed() { unsigned low, size; struct inflate_state state; fixedtables(&state); puts(" /* inffixed.h – table for decoding fixed codes"); puts(" * Generated automatically by makefixed()."); puts(" */"); puts(“”); puts(" /* WARNING: this file should *not* be used by applications."); puts(" It is part of the implementation of this library and is"); puts(" subject to change. Applications should only use zlib.h."); puts(" */"); puts(“”); size = 1U << 9; printf(" static const code lenfix[%u] = {", size); low = 0; for (;;) { if ((low % 7) == 0) printf("\n "); printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op, state.lencode[low].bits, state.lencode[low].val); if (++low == size) break; putchar(‘,’); } puts(“\n };”); size = 1U << 5; printf("\n static const code distfix[%u] = {", size); low = 0; for (;;) { if ((low % 6) == 0) printf("\n "); printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val); if (++low == size) break; putchar(‘,’); } puts(“\n };”); } #endif /* MAKEFIXED */ /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor’s data caches. */ local int updatewindow(strm, end, copy) z_streamp strm; const Bytef *end; unsigned copy; { struct inflate_state FAR *state; unsigned dist; state = (struct inflate_state FAR *)strm->state; /* if it hasn’t been done already, allocate space for the window */ if (state->window == Z_NULL) { state->window = (unsigned char FAR *) ZALLOC(strm, 1U << state->wbits, sizeof(unsigned char)); if (state->window == Z_NULL) return 1; } /* if window not in use yet, initialize */ if (state->wsize == 0) { state->wsize = 1U << state->wbits; state->wnext = 0; state->whave = 0; } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state->wsize) { zmemcpy(state->window, end - state->wsize, state->wsize); state->wnext = 0; state->whave = state->wsize; } else { dist = state->wsize - state->wnext; if (dist > copy) dist = copy; zmemcpy(state->window + state->wnext, end - copy, dist); copy -= dist; if (copy) { zmemcpy(state->window, end - copy, copy); state->wnext = copy; state->whave = state->wsize; } else { state->wnext += dist; if (state->wnext == state->wsize) state->wnext = 0; if (state->whave < state->wsize) state->whave += dist; } } return 0; } /* Macros for inflate(): */ /* check function to use adler32() for zlib or crc32() for gzip */ #ifdef GUNZIP # define UPDATE(check, buf, len) \ (state->flags ? crc32(check, buf, len) : adler32(check, buf, len)) #else # define UPDATE(check, buf, len) adler32(check, buf, len) #endif /* check macros for header crc */ #ifdef GUNZIP # define CRC2(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ check = crc32(check, hbuf, 2); \ } while (0) # define CRC4(check, word) \ do { \ hbuf[0] = (unsigned char)(word); \ hbuf[1] = (unsigned char)((word) >> 8); \ hbuf[2] = (unsigned char)((word) >> 16); \ hbuf[3] = (unsigned char)((word) >> 24); \ check = crc32(check, hbuf, 4); \ } while (0) #endif /* Load registers with state in inflate() for speed */ #define LOAD() \ do { \ put = strm->next_out; \ left = strm->avail_out; \ next = strm->next_in; \ have = strm->avail_in; \ hold = state->hold; \ bits = state->bits; \ } while (0) /* Restore state from registers in inflate() */ #define RESTORE() \ do { \ strm->next_out = put; \ strm->avail_out = left; \ strm->next_in = next; \ strm->avail_in = have; \ state->hold = hold; \ state->bits = bits; \ } while (0) /* Clear the input bit accumulator */ #define INITBITS() \ do { \ hold = 0; \ bits = 0; \ } while (0) /* Get a byte of input into the bit accumulator, or return from inflate() if there is no input available. */ #define PULLBYTE() \ do { \ if (have == 0) goto inf_leave; \ have–; \ hold += (unsigned long)(*next++) << bits; \ bits += 8; \ } while (0) /* Assure that there are at least n bits in the bit accumulator. If there is not enough available input to do that, then return from inflate(). */ #define NEEDBITS(n) \ do { \ while (bits < (unsigned)(n)) \ PULLBYTE(); \ } while (0) /* Return the low n bits of the bit accumulator (n < 16) */ #define BITS(n) \ ((unsigned)hold & ((1U << (n)) - 1)) /* Remove n bits from the bit accumulator */ #define DROPBITS(n) \ do { \ hold >>= (n); \ bits -= (unsigned)(n); \ } while (0) /* Remove zero to seven bits as needed to go to a byte boundary */ #define BYTEBITS() \ do { \ hold >>= bits & 7; \ bits -= bits & 7; \ } while (0) /* inflate() uses a state machine to process as much input data and generate as much output data as possible before returning. The state machine is structured roughly as follows: for (;;) switch (state) { … case STATEn: if (not enough input data or output space to make progress) return; … make progress … state = STATEm; break; … } so when inflate() is called again, the same case is attempted again, and if the appropriate resources are provided, the machine proceeds to the next state. The NEEDBITS() macro is usually the way the state evaluates whether it can proceed or should return. NEEDBITS() does the return if the requested bits are not available. The typical use of the BITS macros is: NEEDBITS(n); … do something with BITS(n) … DROPBITS(n); where NEEDBITS(n) either returns from inflate() if there isn’t enough input left to load n bits into the accumulator, or it continues. BITS(n) gives the low n bits in the accumulator. When done, DROPBITS(n) drops the low n bits off the accumulator. INITBITS() clears the accumulator and sets the number of available bits to zero. BYTEBITS() discards just enough bits to put the accumulator on a byte boundary. After BYTEBITS() and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return if there is no input available. The decoding of variable length codes uses PULLBYTE() directly in order to pull just enough bytes to decode the next code, and no more. Some states loop until they get enough input, making sure that enough state information is maintained to continue the loop where it left off if NEEDBITS() returns in the loop. For example, want, need, and keep would all have to actually be part of the saved state in case NEEDBITS() returns: case STATEw: while (want < need) { NEEDBITS(n); keep[want++] = BITS(n); DROPBITS(n); } state = STATEx; case STATEx: As shown above, if the next state is also the next case, then the break is omitted. A state may also return if there is not enough output space available to complete that state. Those states are copying stored data, writing a literal byte, and copying a matching string. When returning, a “goto inf_leave” is used to update the total counters, update the check value, and determine whether any progress has been made during that inflate() call in order to return the proper return code. Progress is defined as a change in either strm->avail_in or strm->avail_out. When there is a window, goto inf_leave will update the window with the last output written. If a goto inf_leave occurs in the middle of decompression and there is no window currently, goto inf_leave will create one and copy output to the window for the next call of inflate(). In this implementation, the flush parameter of inflate() only affects the return code (per zlib.h). inflate() always writes as much as possible to strm->next_out, given the space available and the provided input–the effect documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers the allocation of and copying into a sliding window until necessary, which provides the effect documented in zlib.h for Z_FINISH when the entire input stream available. So the only thing the flush parameter actually does is: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it will return Z_BUF_ERROR if it has not reached the end of the stream. */ int ZEXPORT inflate(strm, flush) z_streamp strm; int flush; { struct inflate_state FAR *state; z_const unsigned char FAR *next; /* next input */ unsigned char FAR *put; /* next output */ unsigned have, left; /* available input and output */ unsigned long hold; /* bit buffer */ unsigned bits; /* bits in bit buffer */ unsigned in, out; /* save starting available input and output */ unsigned copy; /* number of stored or match bytes to copy */ unsigned char FAR *from; /* where to copy match bytes from */ code here; /* current decoding table entry */ code last; /* parent table entry */ unsigned len; /* length to copy for repeats, bits to drop */ int ret; /* return code */ #ifdef GUNZIP unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ #endif static const unsigned short order[19] = /* permutation of code lengths */ {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; if (inflateStateCheck(strm) || strm->next_out == Z_NULL || (strm->next_in == Z_NULL && strm->avail_in != 0)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ LOAD(); in = have; out = left; ret = Z_OK; for (;;) switch (state->mode) { case HEAD: if (state->wrap == 0) { state->mode = TYPEDO; break; } NEEDBITS(16); #ifdef GUNZIP if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ if (state->wbits == 0) state->wbits = 15; state->check = crc32(0L, Z_NULL, 0); CRC2(state->check, hold); INITBITS(); state->mode = FLAGS; break; } state->flags = 0; /* expect zlib header */ if (state->head != Z_NULL) state->head->done = -1; if (!(state->wrap & 1) || /* check if zlib header allowed */ #else if ( #endif ((BITS(8) << 8) + (hold >> 8)) % 31) { strm->msg = (char *)"incorrect header check"; state->mode = BAD; break; } if (BITS(4) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } DROPBITS(4); len = BITS(4) + 8; if (state->wbits == 0) state->wbits = len; if (len > 15 || len > state->wbits) { strm->msg = (char *)"invalid window size"; state->mode = BAD; break; } state->dmax = 1U << len; Tracev((stderr, “inflate: zlib header ok\n”)); strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = hold & 0x200 ? DICTID : TYPE; INITBITS(); break; #ifdef GUNZIP case FLAGS: NEEDBITS(16); state->flags = (int)(hold); if ((state->flags & 0xff) != Z_DEFLATED) { strm->msg = (char *)"unknown compression method"; state->mode = BAD; break; } if (state->flags & 0xe000) { strm->msg = (char *)"unknown header flags set"; state->mode = BAD; break; } if (state->head != Z_NULL) state->head->text = (int)((hold >> 8) & 1); if ((state->flags & 0x0200) && (state->wrap & 4)) CRC2(state->check, hold); INITBITS(); state->mode = TIME; case TIME: NEEDBITS(32); if (state->head != Z_NULL) state->head->time = hold; if ((state->flags & 0x0200) && (state->wrap & 4)) CRC4(state->check, hold); INITBITS(); state->mode = OS; case OS: NEEDBITS(16); if (state->head != Z_NULL) { state->head->xflags = (int)(hold & 0xff); state->head->os = (int)(hold >> 8); } if ((state->flags & 0x0200) && (state->wrap & 4)) CRC2(state->check, hold); INITBITS(); state->mode = EXLEN; case EXLEN: if (state->flags & 0x0400) { NEEDBITS(16); state->length = (unsigned)(hold); if (state->head != Z_NULL) state->head->extra_len = (unsigned)hold; if ((state->flags & 0x0200) && (state->wrap & 4)) CRC2(state->check, hold); INITBITS(); } else if (state->head != Z_NULL) state->head->extra = Z_NULL; state->mode = EXTRA; case EXTRA: if (state->flags & 0x0400) { copy = state->length; if (copy > have) copy = have; if (copy) { if (state->head != Z_NULL && state->head->extra != Z_NULL) { len = state->head->extra_len - state->length; zmemcpy(state->head->extra + len, next, len + copy > state->head->extra_max ? state->head->extra_max - len : copy); } if ((state->flags & 0x0200) && (state->wrap & 4)) state->check = crc32(state->check, next, copy); have -= copy; next += copy; state->length -= copy; } if (state->length) goto inf_leave; } state->length = 0; state->mode = NAME; case NAME: if (state->flags & 0x0800) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->name != Z_NULL && state->length < state->head->name_max) state->head->name[state->length++] = (Bytef)len; } while (len && copy < have); if ((state->flags & 0x0200) && (state->wrap & 4)) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->name = Z_NULL; state->length = 0; state->mode = COMMENT; case COMMENT: if (state->flags & 0x1000) { if (have == 0) goto inf_leave; copy = 0; do { len = (unsigned)(next[copy++]); if (state->head != Z_NULL && state->head->comment != Z_NULL && state->length < state->head->comm_max) state->head->comment[state->length++] = (Bytef)len; } while (len && copy < have); if ((state->flags & 0x0200) && (state->wrap & 4)) state->check = crc32(state->check, next, copy); have -= copy; next += copy; if (len) goto inf_leave; } else if (state->head != Z_NULL) state->head->comment = Z_NULL; state->mode = HCRC; case HCRC: if (state->flags & 0x0200) { NEEDBITS(16); if ((state->wrap & 4) && hold != (state->check & 0xffff)) { strm->msg = (char *)"header crc mismatch"; state->mode = BAD; break; } INITBITS(); } if (state->head != Z_NULL) { state->head->hcrc = (int)((state->flags >> 9) & 1); state->head->done = 1; } strm->adler = state->check = crc32(0L, Z_NULL, 0); state->mode = TYPE; break; #endif case DICTID: NEEDBITS(32); strm->adler = state->check = ZSWAP32(hold); INITBITS(); state->mode = DICT; case DICT: if (state->havedict == 0) { RESTORE(); return Z_NEED_DICT; } strm->adler = state->check = adler32(0L, Z_NULL, 0); state->mode = TYPE; case TYPE: if (flush == Z_BLOCK || flush == Z_TREES) goto inf_leave; case TYPEDO: if (state->last) { BYTEBITS(); state->mode = CHECK; break; } NEEDBITS(3); state->last = BITS(1); DROPBITS(1); switch (BITS(2)) { case 0: /* stored block */ Tracev((stderr, "inflate: stored block%s\n", state->last ? " (last)" : “”)); state->mode = STORED; break; case 1: /* fixed block */ fixedtables(state); Tracev((stderr, "inflate: fixed codes block%s\n", state->last ? " (last)" : “”)); state->mode = LEN_; /* decode codes */ if (flush == Z_TREES) { DROPBITS(2); goto inf_leave; } break; case 2: /* dynamic block */ Tracev((stderr, "inflate: dynamic codes block%s\n", state->last ? " (last)" : “”)); state->mode = TABLE; break; case 3: strm->msg = (char *)"invalid block type"; state->mode = BAD; } DROPBITS(2); break; case STORED: BYTEBITS(); /* go to byte boundary */ NEEDBITS(32); if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { strm->msg = (char *)"invalid stored block lengths"; state->mode = BAD; break; } state->length = (unsigned)hold & 0xffff; Tracev((stderr, "inflate: stored length %u\n", state->length)); INITBITS(); state->mode = COPY_; if (flush == Z_TREES) goto inf_leave; case COPY_: state->mode = COPY; case COPY: copy = state->length; if (copy) { if (copy > have) copy = have; if (copy > left) copy = left; if (copy == 0) goto inf_leave; zmemcpy(put, next, copy); have -= copy; next += copy; left -= copy; put += copy; state->length -= copy; break; } Tracev((stderr, “inflate: stored end\n”)); state->mode = TYPE; break; case TABLE: NEEDBITS(14); state->nlen = BITS(5) + 257; DROPBITS(5); state->ndist = BITS(5) + 1; DROPBITS(5); state->ncode = BITS(4) + 4; DROPBITS(4); #ifndef PKZIP_BUG_WORKAROUND if (state->nlen > 286 || state->ndist > 30) { strm->msg = (char *)"too many length or distance symbols"; state->mode = BAD; break; } #endif Tracev((stderr, “inflate: table sizes ok\n”)); state->have = 0; state->mode = LENLENS; case LENLENS: while (state->have < state->ncode) { NEEDBITS(3); state->lens[order[state->have++]] = (unsigned short)BITS(3); DROPBITS(3); } while (state->have < 19) state->lens[order[state->have++]] = 0; state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 7; ret = inflate_table(CODES, state->lens, 19, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid code lengths set"; state->mode = BAD; break; } Tracev((stderr, “inflate: code lengths ok\n”)); state->have = 0; state->mode = CODELENS; case CODELENS: while (state->have < state->nlen + state->ndist) { for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.val < 16) { DROPBITS(here.bits); state->lens[state->have++] = here.val; } else { if (here.val == 16) { NEEDBITS(here.bits + 2); DROPBITS(here.bits); if (state->have == 0) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } len = state->lens[state->have - 1]; copy = 3 + BITS(2); DROPBITS(2); } else if (here.val == 17) { NEEDBITS(here.bits + 3); DROPBITS(here.bits); len = 0; copy = 3 + BITS(3); DROPBITS(3); } else { NEEDBITS(here.bits + 7); DROPBITS(here.bits); len = 0; copy = 11 + BITS(7); DROPBITS(7); } if (state->have + copy > state->nlen + state->ndist) { strm->msg = (char *)"invalid bit length repeat"; state->mode = BAD; break; } while (copy–) state->lens[state->have++] = (unsigned short)len; } } /* handle error breaks in while */ if (state->mode == BAD) break; /* check for end-of-block code (better have one) */ if (state->lens[256] == 0) { strm->msg = (char *)"invalid code – missing end-of-block"; state->mode = BAD; break; } /* build code tables – note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state->next = state->codes; state->lencode = (const code FAR *)(state->next); state->lenbits = 9; ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), &(state->lenbits), state->work); if (ret) { strm->msg = (char *)"invalid literal/lengths set"; state->mode = BAD; break; } state->distcode = (const code FAR *)(state->next); state->distbits = 6; ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, &(state->next), &(state->distbits), state->work); if (ret) { strm->msg = (char *)"invalid distances set"; state->mode = BAD; break; } Tracev((stderr, “inflate: codes ok\n”)); state->mode = LEN_; if (flush == Z_TREES) goto inf_leave; case LEN_: state->mode = LEN; case LEN: if (have >= INFLATE_FAST_MIN_INPUT && left >= INFLATE_FAST_MIN_OUTPUT) { RESTORE(); inflate_fast(strm, out); LOAD(); if (state->mode == TYPE) state->back = -1; break; } state->back = 0; for (;;) { here = state->lencode[BITS(state->lenbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if (here.op && (here.op & 0xf0) == 0) { last = here; for (;;) { here = state->lencode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; state->length = (unsigned)here.val; if ((int)(here.op) == 0) { Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? “inflate: literal '%c’\n” : "inflate: literal 0x%02x\n", here.val)); state->mode = LIT; break; } if (here.op & 32) { Tracevv((stderr, “inflate: end of block\n”)); state->back = -1; state->mode = TYPE; break; } if (here.op & 64) { strm->msg = (char *)"invalid literal/length code"; state->mode = BAD; break; } state->extra = (unsigned)(here.op) & 15; state->mode = LENEXT; case LENEXT: if (state->extra) { NEEDBITS(state->extra); state->length += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } Tracevv((stderr, "inflate: length %u\n", state->length)); state->was = state->length; state->mode = DIST; case DIST: for (;;) { here = state->distcode[BITS(state->distbits)]; if ((unsigned)(here.bits) <= bits) break; PULLBYTE(); } if ((here.op & 0xf0) == 0) { last = here; for (;;) { here = state->distcode[last.val + (BITS(last.bits + last.op) >> last.bits)]; if ((unsigned)(last.bits + here.bits) <= bits) break; PULLBYTE(); } DROPBITS(last.bits); state->back += last.bits; } DROPBITS(here.bits); state->back += here.bits; if (here.op & 64) { strm->msg = (char *)"invalid distance code"; state->mode = BAD; break; } state->offset = (unsigned)here.val; state->extra = (unsigned)(here.op) & 15; state->mode = DISTEXT; case DISTEXT: if (state->extra) { NEEDBITS(state->extra); state->offset += BITS(state->extra); DROPBITS(state->extra); state->back += state->extra; } #ifdef INFLATE_STRICT if (state->offset > state->dmax) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #endif Tracevv((stderr, "inflate: distance %u\n", state->offset)); state->mode = MATCH; case MATCH: if (left == 0) goto inf_leave; copy = out - left; if (state->offset > copy) { /* copy from window */ copy = state->offset - copy; if (copy > state->whave) { if (state->sane) { strm->msg = (char *)"invalid distance too far back"; state->mode = BAD; break; } #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR Trace((stderr, “inflate.c too far\n”)); copy -= state->whave; if (copy > state->length) copy = state->length; if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = 0; } while (–copy); if (state->length == 0) state->mode = LEN; break; #endif } if (copy > state->wnext) { copy -= state->wnext; from = state->window + (state->wsize - copy); } else from = state->window + (state->wnext - copy); if (copy > state->length) copy = state->length; } else { /* copy from output */ from = put - state->offset; copy = state->length; } if (copy > left) copy = left; left -= copy; state->length -= copy; do { *put++ = *from++; } while (–copy); if (state->length == 0) state->mode = LEN; break; case LIT: if (left == 0) goto inf_leave; *put++ = (unsigned char)(state->length); left–; state->mode = LEN; break; case CHECK: if (state->wrap) { NEEDBITS(32); out -= left; strm->total_out += out; state->total += out; if ((state->wrap & 4) && out) strm->adler = state->check = UPDATE(state->check, put - out, out); out = left; if ((state->wrap & 4) && ( #ifdef GUNZIP state->flags ? hold : #endif ZSWAP32(hold)) != state->check) { strm->msg = (char *)"incorrect data check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, “inflate: check matches trailer\n”)); } #ifdef GUNZIP state->mode = LENGTH; case LENGTH: if (state->wrap && state->flags) { NEEDBITS(32); if (hold != (state->total & 0xffffffffUL)) { strm->msg = (char *)"incorrect length check"; state->mode = BAD; break; } INITBITS(); Tracev((stderr, “inflate: length matches trailer\n”)); } #endif state->mode = DONE; case DONE: ret = Z_STREAM_END; goto inf_leave; case BAD: ret = Z_DATA_ERROR; goto inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: default: return Z_STREAM_ERROR; } /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ inf_leave: RESTORE(); if (state->wsize || (out != strm->avail_out && state->mode < BAD && (state->mode < CHECK || flush != Z_FINISH))) if (updatewindow(strm, strm->next_out, out - strm->avail_out)) { state->mode = MEM; return Z_MEM_ERROR; } in -= strm->avail_in; out -= strm->avail_out; strm->total_in += in; strm->total_out += out; state->total += out; if ((state->wrap & 4) && out) strm->adler = state->check = UPDATE(state->check, strm->next_out - out, out); strm->data_type = (int)state->bits + (state->last ? 64 : 0) + (state->mode == TYPE ? 128 : 0) + (state->mode == LEN_ || state->mode == COPY_ ? 256 : 0); if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) ret = Z_BUF_ERROR; return ret; } int ZEXPORT inflateEnd(strm) z_streamp strm; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->window != Z_NULL) ZFREE(strm, state->window); ZFREE(strm, strm->state); strm->state = Z_NULL; Tracev((stderr, “inflate: end\n”)); return Z_OK; } int ZEXPORT inflateGetDictionary(strm, dictionary, dictLength) z_streamp strm; Bytef *dictionary; uInt *dictLength; { struct inflate_state FAR *state; /* check state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; /* copy dictionary */ if (state->whave && dictionary != Z_NULL) { zmemcpy(dictionary, state->window + state->wnext, state->whave - state->wnext); zmemcpy(dictionary + state->whave - state->wnext, state->window, state->wnext); } if (dictLength != Z_NULL) *dictLength = state->whave; return Z_OK; } int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) z_streamp strm; const Bytef *dictionary; uInt dictLength; { struct inflate_state FAR *state; unsigned long dictid; int ret; /* check state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (state->wrap != 0 && state->mode != DICT) return Z_STREAM_ERROR; /* check for correct dictionary identifier */ if (state->mode == DICT) { dictid = adler32(0L, Z_NULL, 0); dictid = adler32(dictid, dictionary, dictLength); if (dictid != state->check) return Z_DATA_ERROR; } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary + dictLength, dictLength); if (ret) { state->mode = MEM; return Z_MEM_ERROR; } state->havedict = 1; Tracev((stderr, “inflate: dictionary set\n”)); return Z_OK; } int ZEXPORT inflateGetHeader(strm, head) z_streamp strm; gz_headerp head; { struct inflate_state FAR *state; /* check state */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; /* save header structure */ state->head = head; head->done = 0; return Z_OK; } /* Search buf[0…len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found or when out of input. When called, *have is the number of pattern bytes found in order so far, in 0…3. On return *have is updated to the new state. If on return *have equals four, then the pattern was found and the return value is how many bytes were read including the last byte of the pattern. If *have is less than four, then the pattern has not been found yet and the return value is len. In the latter case, syncsearch() can be called again with more data and the *have state. *have is initialized to zero for the first call. */ local unsigned syncsearch(have, buf, len) unsigned FAR *have; const unsigned char FAR *buf; unsigned len; { unsigned got; unsigned next; got = *have; next = 0; while (next < len && got < 4) { if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) got++; else if (buf[next]) got = 0; else got = 4 - got; next++; } *have = got; return next; } int ZEXPORT inflateSync(strm) z_streamp strm; { unsigned len; /* number of bytes to look at or looked at */ unsigned long in, out; /* temporary to save total_in and total_out */ unsigned char buf[4]; /* to restore bit buffer to byte string */ struct inflate_state FAR *state; /* check parameters */ if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; /* if first time, start search in bit buffer */ if (state->mode != SYNC) { state->mode = SYNC; state->hold <<= state->bits & 7; state->bits -= state->bits & 7; len = 0; while (state->bits >= 8) { buf[len++] = (unsigned char)(state->hold); state->hold >>= 8; state->bits -= 8; } state->have = 0; syncsearch(&(state->have), buf, len); } /* search available input */ len = syncsearch(&(state->have), strm->next_in, strm->avail_in); strm->avail_in -= len; strm->next_in += len; strm->total_in += len; /* return no joy or set up to restart inflate() on a new block */ if (state->have != 4) return Z_DATA_ERROR; in = strm->total_in; out = strm->total_out; inflateReset(strm); strm->total_in = in; strm->total_out = out; state->mode = TYPE; return Z_OK; } /* Returns true if inflate is currently at the end of a block generated by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored block. When decompressing, PPP checks that at the end of input packet, inflate is waiting for these length bytes. */ int ZEXPORT inflateSyncPoint(strm) z_streamp strm; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; return state->mode == STORED && state->bits == 0; } int ZEXPORT inflateCopy(dest, source) z_streamp dest; z_streamp source; { struct inflate_state FAR *state; struct inflate_state FAR *copy; unsigned char FAR *window; unsigned wsize; /* check input */ if (inflateStateCheck(source) || dest == Z_NULL) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)source->state; /* allocate space */ copy = (struct inflate_state FAR *) ZALLOC(source, 1, sizeof(struct inflate_state)); if (copy == Z_NULL) return Z_MEM_ERROR; window = Z_NULL; if (state->window != Z_NULL) { window = (unsigned char FAR *) ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); if (window == Z_NULL) { ZFREE(source, copy); return Z_MEM_ERROR; } } /* copy state */ zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); zmemcpy((voidpf)copy, (voidpf)state, sizeof(struct inflate_state)); copy->strm = dest; if (state->lencode >= state->codes && state->lencode <= state->codes + ENOUGH - 1) { copy->lencode = copy->codes + (state->lencode - state->codes); copy->distcode = copy->codes + (state->distcode - state->codes); } copy->next = copy->codes + (state->next - state->codes); if (window != Z_NULL) { wsize = 1U << state->wbits; zmemcpy(window, state->window, wsize); } copy->window = window; dest->state = (struct internal_state FAR *)copy; return Z_OK; } int ZEXPORT inflateUndermine(strm, subvert) z_streamp strm; int subvert; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; #ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR state->sane = !subvert; return Z_OK; #else (void)subvert; state->sane = 1; return Z_DATA_ERROR; #endif } int ZEXPORT inflateValidate(strm, check) z_streamp strm; int check; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return Z_STREAM_ERROR; state = (struct inflate_state FAR *)strm->state; if (check) state->wrap |= 4; else state->wrap &= ~4; return Z_OK; } long ZEXPORT inflateMark(strm) z_streamp strm; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return -(1L << 16); state = (struct inflate_state FAR *)strm->state; return (long)(((unsigned long)((long)state->back)) << 16) + (state->mode == COPY ? state->length : (state->mode == MATCH ? state->was - state->length : 0)); } unsigned long ZEXPORT inflateCodesUsed(strm) z_streamp strm; { struct inflate_state FAR *state; if (inflateStateCheck(strm)) return (unsigned long)-1; state = (struct inflate_state FAR *)strm->state; return (unsigned long)(state->next - state->codes); }

Related news

CVE-2022-43908: Security Bulletin: IBM Security Guardium is affected by several vulnerabilities

IBM Security Guardium 11.3 could allow an authenticated user to cause a denial of service due to improper input validation. IBM X-Force ID: 240903.

RHSA-2023:3742: Red Hat Security Advisory: Red Hat OpenShift Data Foundation 4.13.0 security and bug fix update

Updated images that include numerous enhancements, security, and bug fixes are now available in Red Hat Container Registry for Red Hat OpenShift Data Foundation 4.13.0 on Red Hat Enterprise Linux 9. Red Hat Product Security has rated this update as having a security impact of Important. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2020-16250: A flaw was found in Vault and Vault Enterprise (“Vault”). In the affected versions of Vault, with the AWS Auth Method configured and under certain circumstances, the values relied upon by Vault to validate AWS IAM ident...

RHSA-2023:1095: Red Hat Security Advisory: zlib security update

An update for zlib is now available for Red Hat Enterprise Linux 7. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-37434: A security vulnerability was found in zlib. The flaw triggered a heap-based buffer in inflate in the inflate.c function via a large gzip header extra field. This flaw is only applicable in the call inflateGetHeader.

Red Hat Security Advisory 2023-0795-01

Red Hat Security Advisory 2023-0795-01 - Submariner 0.13.3 packages that fix various bugs and add various enhancements that are now available for Red Hat Advanced Cluster Management for Kubernetes version 2.6.

Red Hat Security Advisory 2023-0542-01

Red Hat Security Advisory 2023-0542-01 - Red Hat OpenShift Service Mesh is the Red Hat distribution of the Istio service mesh project, tailored for installation into an on-premise OpenShift Container Platform installation. This advisory covers container images for the release. Issues addressed include denial of service and spoofing vulnerabilities.

Red Hat Security Advisory 2023-0470-01

Red Hat Security Advisory 2023-0470-01 - An update is now available for Migration Toolkit for Runtimes (v1.0.1).

Red Hat Security Advisory 2023-0408-01

Red Hat Security Advisory 2023-0408-01 - OpenShift Virtualization is Red Hat's virtualization solution designed for Red Hat OpenShift Container Platform. Issues addressed include denial of service and out of bounds read vulnerabilities.

RHSA-2022:9047: Red Hat Security Advisory: Migration Toolkit for Containers (MTC) 1.7.6 security and bug fix update

The Migration Toolkit for Containers (MTC) 1.7.6 is now available. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-1705: golang: net/http: improper sanitization of Transfer-Encoding header * CVE-2022-1962: golang: go/parser: stack exhaustion in all Parse* functions * CVE-2022-28131: golang: encoding/xml: stack exhaustion in Decoder.Skip * CVE-2022-30629: golang: crypto/tls: session tickets lack random ticket_age_add * CVE-2022-30630: golang: io/fs: stack exhaustion in G...

RHSA-2022:8964: Red Hat Security Advisory: updated rh-sso-7/sso76-openshift-rhel8 container and operator related images

Updated rh-sso-7/sso76-openshift-rhel8 container image and rh-sso-7/sso7-rhel8-operator-bundle image is now available for RHEL-8 based Middleware Containers. Red Hat Product Security has rated this update as having a security impact of Important. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-3782: keycloak: path traversal via double URL encoding * CVE-2022-3916: keycloak: Session takeover with OIDC offline refreshtokens

RHSA-2022:8889: Red Hat Security Advisory: Openshift Logging 5.3.14 bug fix release and security update

Openshift Logging Bug Fix Release (5.3.14) Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2020-36518: jackson-databind: denial of service via a large depth of nested objects * CVE-2022-42003: jackson-databind: deep wrapper array nesting wrt UNWRAP_SINGLE_VALUE_ARRAYS * CVE-2022-42004: jackson-databind: use of deeply nested arrays

RHSA-2022:8841: Red Hat Security Advisory: Red Hat JBoss Core Services Apache HTTP Server 2.4.51 SP1 security update

An update is now available for Red Hat JBoss Core Services. Red Hat Product Security has rated this update as having a security impact of Important. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-1292: openssl: c_rehash script allows command injection * CVE-2022-2068: openssl: the c_rehash script allows command injection * CVE-2022-22721: httpd: core: Possible buffer overflow with very large or unlimited LimitXMLRequestBody * CVE-2022-23943: httpd: mod_sed: Read/write beyond bounds * CVE-2022-26377: httpd: mod_proxy_ajp: Possible request smuggling * CVE-2...

Red Hat Security Advisory 2022-8750-01

Red Hat Security Advisory 2022-8750-01 - OpenShift Virtualization is Red Hat's virtualization solution designed for Red Hat OpenShift Container Platform. Issues addressed include denial of service and out of bounds read vulnerabilities.

Red Hat Security Advisory 2022-8634-01

Red Hat Security Advisory 2022-8634-01 - OpenShift API for Data Protection enables you to back up and restore application resources, persistent volume data, and internal container images to external backup storage. OADP enables both file system-based and snapshot-based backups for persistent volumes.

Red Hat Security Advisory 2022-7435-01

Red Hat Security Advisory 2022-7435-01 - An update is now available for Logging subsystem for Red Hat OpenShift 5.4. Issues addressed include a denial of service vulnerability.

RHSA-2022:8291: Red Hat Security Advisory: rsync security and bug fix update

An update for rsync is now available for Red Hat Enterprise Linux 9. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-37434: zlib: heap-based buffer over-read and overflow in inflate() in inflate.c via a large gzip header extra field

Red Hat Security Advisory 2022-7434-01

Red Hat Security Advisory 2022-7434-01 - A Red Hat OpenShift security update has been provided for the Logging Subsystem.

Red Hat Security Advisory 2022-6882-01

Red Hat Security Advisory 2022-6882-01 - Openshift Logging 5.3.13 security and bug fix release.

RHSA-2022:7793: Red Hat Security Advisory: rsync security and enhancement update

An update for rsync is now available for Red Hat Enterprise Linux 8. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-37434: zlib: heap-based buffer over-read and overflow in inflate() in inflate.c via a large gzip header extra field

RHSA-2022:7407: Red Hat Security Advisory: Service Binding Operator 1.3.1 security update

An update for service-binding-operator-bundle-container and service-binding-operator-container is now available for OpenShift Developer Tools and Services for OCP 4.9. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-32149: golang: golang.org/x/text/language: ParseAcceptLanguage takes a long time to parse complex tags

Red Hat Security Advisory 2022-7313-01

Red Hat Security Advisory 2022-7313-01 - Red Hat Advanced Cluster Management for Kubernetes 2.6.2 images Red Hat Advanced Cluster Management for Kubernetes provides the capabilities to address common challenges that administrators and site reliability engineers face as they work across a range of public and private cloud environments. Issues addressed include denial of service and remote SQL injection vulnerabilities.

Red Hat Security Advisory 2022-7276-01

Red Hat Security Advisory 2022-7276-01 - Red Hat Advanced Cluster Management for Kubernetes 2.4.8 images Red Hat Advanced Cluster Management for Kubernetes provides the capabilities to address common challenges that administrators and site reliability engineers face as they work across a range of public and private cloud environments. Clusters and applications are all visible and managed from a single console—with security policy built in. This advisory contains the container images for Red Hat Advanced Cluster Management for Kubernetes, which fix several bugs. Issues addressed include denial of service, server-side request forgery, and remote SQL injection vulnerabilities.

RHSA-2022:7314: Red Hat Security Advisory: zlib security update

An update for zlib is now available for Red Hat Enterprise Linux 9. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-37434: zlib: heap-based buffer over-read and overflow in inflate() in inflate.c via a large gzip header extra field

RHSA-2022:7201: Red Hat Security Advisory: OpenShift Container Platform 4.11.12 security update

Red Hat OpenShift Container Platform release 4.11.12 is now available with updates to packages and images that fix several bugs and add enhancements. Red Hat Product Security has rated this update as having a security impact of Important. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-26945: go-getter: command injection vulnerability * CVE-2022-30321: go-getter: unsafe download (issue 1 of 3) * CVE-2022-30322: go-getter: unsafe download (issue 2 of 3) * CVE-2022-30323: go-getter: unsafe download (issue 3 of 3)

CVE-2022-32929: About the security content of iOS 15.7.1 and iPadOS 15.7.1

A permissions issue was addressed with additional restrictions. This issue is fixed in iOS 15.7.1 and iPadOS 15.7.1, iOS 15.7 and iPadOS 15.7, iOS 16.1 and iPadOS 16. An app may be able to access iOS backups.

CVE-2022-32946: About the security content of iOS 16.1 and iPadOS 16

This issue was addressed with improved entitlements. This issue is fixed in iOS 16.1 and iPadOS 16. An app may be able to record audio using a pair of connected AirPods.

CVE-2022-26730: About the security content of macOS Ventura 13

A memory corruption issue existed in the processing of ICC profiles. This issue was addressed with improved input validation. This issue is fixed in macOS Ventura 13. Processing a maliciously crafted image may lead to arbitrary code execution.

RHSA-2022:7276: Red Hat Security Advisory: Red Hat Advanced Cluster Management 2.4.8 security fixes and container updates

Red Hat Advanced Cluster Management for Kubernetes 2.4.8 General Availability release images, which fix security issues. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE links in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-2238: search-api: SQL injection leads to remote denial of service * CVE-2022-25858: terser: insecure use of regular expressions leads to ReDoS * CVE-2022-31129: moment: inefficient parsing algorithm resulting in DoS * CVE-2022-35948: nodejs: undici vulnerable to CRLF via content headers * CVE-2022-35949: n...

Gentoo Linux Security Advisory 202210-42

Gentoo Linux Security Advisory 202210-42 - A buffer overflow in zlib might allow an attacker to cause remote code execution. Versions less than 1.2.12-r3 are affected.

Apple Security Advisory 2022-10-27-12

Apple Security Advisory 2022-10-27-12 - watchOS 9.1 addresses code execution, out of bounds write, and spoofing vulnerabilities.

RHSA-2022:7106: Red Hat Security Advisory: zlib security update

An update for zlib is now available for Red Hat Enterprise Linux 8. Red Hat Product Security has rated this update as having a security impact of Moderate. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available for each vulnerability from the CVE link(s) in the References section.This content is licensed under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). If you distribute this content, or a modified version of it, you must provide attribution to Red Hat Inc. and provide a link to the original. Related CVEs: * CVE-2022-37434: zlib: heap-based buffer over-read and overflow in inflate() in inflate.c via a large gzip header extra field

CVE-2022-36368: IPFire 2.27 - Core Update 170 released - The IPFire Blog

Multiple stored cross-site scripting vulnerabilities in the web user interface of IPFire versions prior to 2.27 allows a remote authenticated attacker with administrative privilege to inject an arbitrary script.

Ubuntu Security Notice USN-5570-2

Ubuntu Security Notice 5570-2 - USN-5570-1 fixed a vulnerability in zlib. This update provides the corresponding update for Ubuntu 22.04 LTS and Ubuntu 20.04 LTS. Evgeny Legerov discovered that zlib incorrectly handled memory when performing certain inflate operations. An attacker could use this issue to cause zlib to crash, resulting in a denial of service, or possibly execute arbitrary code.

CVE-2022-38701: en/security-disclosure/2022/2022-09.md · OpenHarmony/security - Gitee.com

OpenHarmony-v3.1.2 and prior versions have a heap overflow vulnerability. Local attackers can trigger a heap overflow and get network sensitive information.

Ubuntu Security Notice USN-5573-1

Ubuntu Security Notice 5573-1 - Evgeny Legerov discovered that zlib incorrectly handled memory when performing certain inflate operations. An attacker could use this issue to cause rsync to crash, resulting in a denial of service, or possibly execute arbitrary code.

Ubuntu Security Notice USN-5570-1

Ubuntu Security Notice 5570-1 - Evgeny Legerov discovered that zlib incorrectly handled memory when performing certain inflate operations. An attacker could use this issue to cause zlib to crash, resulting in a denial of service, or possibly execute arbitrary code.

CVE: Latest News

CVE-2023-6905
CVE-2023-6903
CVE-2023-3907
CVE-2023-6904